Pediatric Cardiology

, Volume 35, Issue 4, pp 732–740 | Cite as

Quantification of Local Hemodynamic Alterations Caused by Virtual Implantation of Three Commercially Available Stents for the Treatment of Aortic Coarctation

  • Sung Kwon
  • Jeffrey A. Feinstein
  • Ronak J. Dholakia
  • John F. LaDisaJr.
Original Article

Abstract

Patients with coarctation of the aorta (CoA) are prone to morbidity including atherosclerotic plaque that has been shown to correlate with altered wall shear stress (WSS) in the descending thoracic aorta (dAo). We created the first patient-specific computational fluid dynamics (CFD) model of a CoA patient treated by Palmaz stenting to date, and compared resulting WSS distributions to those from virtual implantation of Genesis XD and modified NuMED CP stents, also commonly used for CoA. CFD models were created from magnetic resonance imaging, fluoroscopy and blood pressure data. Simulations incorporated vessel deformation, downstream vascular resistance and compliance to match measured data and generate blood flow velocity and time-averaged WSS (TAWSS) results. TAWSS was quantified longitudinally and circumferentially in the stented region and dAo. While modest differences were seen in the distal portion of the stented region, marked differences were observed downstream along the posterior dAo and depended on stent type. The Genesis XD model had the least area of TAWSS values exceeding the threshold for platelet aggregation in vitro, followed by the Palmaz and NuMED CP stents. Alterations in local blood flow patterns and WSS imparted on the dAo appear to depend on the type of stent implanted for CoA. Following confirmation in larger studies, these findings may aid pediatric interventional cardiologists in selecting the most appropriate stent for each patient, and ultimately reduce long-term morbidity following treatment for CoA by stenting.

Keywords

CHD great vessel anomalies Computer simulation Circulatory hemodynamics Aortic operation Computer applications 

Notes

Acknowledgments

The authors gratefully acknowledge Charles Taylor, Ph.D., Mary Draney, Ph.D., Frandics Chan, MD, Ph.D., Stanton Perry, MD, Nathan Wilson, Ph.D., Laura Ellwein, Ph.D., and Timothy Gundert, MS, for technical assistance. This work was supported by a Dean’s Postdoctoral Fellowship, the Vera Moulton Wall Center for Pulmonary Vascular Disease at the Stanford University School of Medicine, the Alvin and Marion Birnschein Foundation, NIH grant R15HL096096-01, and NSF awards OCI-0923037 and CBET-0521602.

Supplementary material

246_2013_845_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 41 kb)

References

  1. 1.
    Coogan JS, Chan FP, Taylor CA, Feinstein JA (2011) Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheter Cardiovasc Interv 77(5):680–691CrossRefPubMedGoogle Scholar
  2. 2.
    Draney MT, Alley MA, Tang BT, Wilson NM, Herfkens RJ, Taylor CA (2002) Importance of 3D nonlinear gradient corrections for quantitative analysis of 3D MR angiographic data. In: International society for magnetic resonance in medicine, Honolulu, HIGoogle Scholar
  3. 3.
    Duraiswamy N, Schoephoerster RT, Moore JE Jr (2009) Comparison of near-wall hemodynamic parameters in stented artery models. J Biomech Eng 131(6):061006PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Ebeid MR (2003) Balloon expandable stents for coarctation of the aorta: review of current status and technical considerations. Images Pediatr Cardiol 15:25–41Google Scholar
  5. 5.
    Ferencz C, Rubin JD, McCarter RJ, Brenner JI, Neill CA, Perry LW, Hepner SI, Downing JW (1985) Congenital heart disease: prevalence at livebirth. The Baltimore-Washington Infant Study. Am J Epidemiol 12(1):31–36Google Scholar
  6. 6.
    Figueroa CA, Vignon-Clementel IE, Jansen KE, Hughes TJR, Taylor CA (2006) A coupled momentum method for modeling blood flow in three-dimensional deformable arteries. Comput Methods Appl Mech Eng 195:5685–5706CrossRefGoogle Scholar
  7. 7.
    Forbes TJ, Rodriguez-Cruz E, Amin Z, Benson LN, Fagan TE, Hellenbrand WE, Latson LA, Moore P, Mullins CE, Vincent JA (2003) The Genesis stent: a new low-profile stent for use in infants, children, and adults with congenital heart disease. Catheter Cardiovasc Interv 59(3):406–414CrossRefPubMedGoogle Scholar
  8. 8.
    Frydrychowicz A, Stalder AF, Russe MF, Bock J, Bauer S, Harloff A, Berger A, Langer M, Hennig J, Markl M (2009) Three-dimensional analysis of segmental wall shear stress in the aorta by flow-sensitive four-dimensional-MRI. J Magn Reson Imaging 30(1):77–84CrossRefPubMedGoogle Scholar
  9. 9.
    Gibbons GH, Dzau VJ (1994) The emerging concept of vascular remodeling. N Engl J Med 330(20):1431–1438CrossRefPubMedGoogle Scholar
  10. 10.
    Gundert TJ, Shadden SC, Williams AR, Koo BK, Feinstein JA, Ladisa JF Jr (2011) A rapid and computationally inexpensive method to virtually implant current and next-generation stents into subject-specific computational fluid dynamics models. Ann Biomed Eng 39(5):1423–1437CrossRefPubMedGoogle Scholar
  11. 11.
    Harrison DA, McLaughlin PR, Lazzam C, Connelly M, Benson LN (2001) Endovascular stents in the management of coarctation of the aorta in the adolescent and adult: one year follow up. Heart 85:561–566PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Hathcock JJ (2006) Flow effects on coagulation and thrombosis. Arterioscler Thromb Vasc Biol 26(8):1729–1737CrossRefPubMedGoogle Scholar
  13. 13.
    American Heart Association (2005) Heart disease and stroke statistics (2005) update. American Heart Association, DallasGoogle Scholar
  14. 14.
    Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, Sakariassen KS (1997) Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 17(4):646–653CrossRefPubMedGoogle Scholar
  15. 15.
    Karino T, Goldsmith HL (1984) Role of blood cell-wall interactions in thrombogenesis and atherogenesis: a microrheological study. Biorheology 21(4):587–601PubMedGoogle Scholar
  16. 16.
    LaDisa JF Jr, Olson LE, Guler I, Hettrick DA, Audi SH, Kersten JR, Warltier DC, Pagel PS (2004) Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery. J Appl Physiol 97:424–430CrossRefPubMedGoogle Scholar
  17. 17.
    LaDisa JF Jr, Olson LE, Molthen RC, Hettrick DA, Pratt PF, Hardel MD, Kersten JR, Warltier DC, Pagel PS (2005) Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries. Am J Physiol Heart Circ Physiol 288(5):H2465–H2475CrossRefPubMedGoogle Scholar
  18. 18.
    LaDisa JF Jr, Alberto Figueroa C, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008CrossRefPubMedGoogle Scholar
  19. 19.
    LaDisa JF Jr, Figueroa CA, Vignon-Clementel IE, Kim HJ, Xiao N, Ellwein LM, Chan FP, Feinstein JA, Taylor CA (2011) Computational simulations for aortic coarctation: representative results from a sampling of patients. J Biomech Eng 133(9):091008CrossRefPubMedGoogle Scholar
  20. 20.
    Les AS, Shadden SC, Figueroa CA, Park JM, Tedesco MM, Herfkens RJ, Dalman RL, Taylor CA (2010) Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann Biomed Eng 38(4):1288–1313CrossRefPubMedGoogle Scholar
  21. 21.
    Magee AG, Brzezinska-Rajszys G, Qureshi SA, Rosenthal E, Zubrzycka M, Ksiazyk J, Tynan M (1999) Stent implantation for aortic coarctation and recoarctation. Heart 82:600–606PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Menon A, Eddinger TJ, Wang H, Wendell DC, Toth JM, Ladisa JF Jr (2012) Altered hemodynamics, endothelial function, and protein expression occur with aortic coarctation and persist after repair. Am J Physiol Heart Circ Physiol 303(11):H1304–H1318PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Muller J, Sahni O, Li X, Jansen KE, Shephard MS, Taylor CA (2005) Anisotropic adaptive finite element method for modeling blood flow. Comput Methods Biomech Biomed Engin 8(5):295–305CrossRefPubMedGoogle Scholar
  24. 24.
    Murphy JB, Boyle FJ (2010) A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 47(2):117–132PubMedGoogle Scholar
  25. 25.
    O’Rourke MF, Cartmill TB (1971) Influence of aortic coarctation on pulsatile hemodynamics in the proximal aorta. Circulation 44(2):281–292CrossRefPubMedGoogle Scholar
  26. 26.
    Ou P, Bonnet D, Auriacombe L, Pedroni E, Balleux F, Sidi D, Mousseaux E (2004) Late systemic hypertension and aortic arch geometry after successful repair of coarctation of the aorta. Eur Heart J 25(20):1853–1859CrossRefPubMedGoogle Scholar
  27. 27.
    Perloff JK (2003) Coarctation of the aorta. Clinical recognition of congenital heart disease. Saunders, Philadelphia, pp 113–143Google Scholar
  28. 28.
    Redington AN, Hayes AM, Ho SY (1993) Transcatheter stent implantation to treat aortic coarctation in infancy. Br Heart J 69:80–82PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Sahni O, Muller J, Jansen KE, Shephard MS, Taylor CA (2006) Efficient anisotropic adaptive discretization of the cardiovascular system. Comput Methods Biomech Biomed Engin 195:5634–5655Google Scholar
  30. 30.
    Shim D, Lloyd TR, Moorehead CP, Bove EL, Mosca RS, Beekman RH III (1997) Comparison of hospital charges for balloon angioplasty and surgical repair in children with native coarctation of the aorta. Am J Cardiol 79(8):1143–1146CrossRefPubMedGoogle Scholar
  31. 31.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195:3776–3796CrossRefGoogle Scholar
  32. 32.
    Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13(5):625–640CrossRefPubMedGoogle Scholar
  33. 33.
    Wendell DC, Samyn MM, Cava JR, Ellwein LM, Krolikowski MM, Gandy KL, Pelech AN, Shadden SC, LaDisa JF Jr (2013) Including aortic valve morphology in computational fluid dynamics simulations: initial findings and application to aortic coarctation. Med Eng Phys 35(6):723–735CrossRefPubMedGoogle Scholar
  34. 34.
    Wentzel JJ, Whelan DM, van der Giessen WJ, van Beusekom HM, Andhyiswara I, Serruys PW, Slager CJ, Krams R (2000) Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 33(10):1287–1295CrossRefPubMedGoogle Scholar
  35. 35.
    Wentzel JJ, Corti R, Fayad ZA, Wisdom P, Macaluso F, Winkelman MO, Fuster V, Badimon JJ (2005) Does shear stress modulate both plaque progression and regression in the thoracic aorta? Human study using serial magnetic resonance imaging. J Am Coll Cardiol 45(6):846–854CrossRefPubMedGoogle Scholar
  36. 36.
    Wilson N, Wang K, Dutton R, Taylor CA (2001) A software framework for creating patient specific geometric models from medical imaging data for simulation based medical planning of vascular surgery. Lect Notes Comput Sci 2208:449–456CrossRefGoogle Scholar
  37. 37.
    Zarins CK, Giddens DP, Bharadvaj BK, Sottiurai VS, Mabon RF, Glagov S (1983) Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ Res 53(4):502–514CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sung Kwon
    • 1
  • Jeffrey A. Feinstein
    • 2
    • 3
  • Ronak J. Dholakia
    • 4
  • John F. LaDisaJr.
    • 1
    • 5
    • 6
  1. 1.Department of Biomedical EngineeringMarquette UniversityMilwaukeeUSA
  2. 2.Department of BioengineeringStanford UniversityStanfordUSA
  3. 3.Department of PediatricsLucile Packard Children’s HospitalPalo AltoUSA
  4. 4.Cerebrovascular CenterStony Brook University Medical CenterStony BrookUSA
  5. 5.Adjunct Faculty of the Herma Heart Center and Cardiovascular MedicineChildren’s Hospital of WisconsinMilwaukeeUSA
  6. 6.Department of Medicine, Division of Cardiovascular MedicineMedical College of WisconsinMilwaukeeUSA

Personalised recommendations