Pediatric Cardiology

, Volume 34, Issue 4, pp 817–825 | Cite as

Nitric Oxide-Associated Pulmonary Edema in Children With Pulmonary Venous Hypertension

  • J. Scott Baird
  • Vinod Havalad
  • Linda Aponte-Patel
  • Thyyar M. Ravindranath
  • Tessie W. October
  • Thomas J. Starc
  • Arthur J. Smerling
Original Article


Nitric oxide (NO)-associated pulmonary edema is rarely reported in children; in adults, it is often associated with left-sided heart failure. We report a case series of children with NO-associated pulmonary edema, which was defined as new multilobar alveolar infiltrates and worsening hypoxemia within 24 h of initiation or escalation of NO and radiologic or clinical improvement after NO discontinuation. We identified six patients (0.4–4 years old) with ten episodes of NO-associated pulmonary edema. Diagnoses included atrioventricular canal defect with mitral valve disease (n = 2), pulmonary atresia and major aorta-pulmonary collateral arteries (n = 2), total anomalous pulmonary venous return (n = 1), and pulmonary veno-occlusive disease (n = 1). All patients had evidence of pulmonary venous hypertension, and two had mitral valve disease resulting in clinical evidence of left-sided heart failure. Pulmonary edema improved or resolved within 24 h of discontinuing NO. At cardiac catheterization, mean left atrial pressure was <15 mmHg in three of three patients (none with mitral valve disease), whereas pulmonary artery occlusion pressure was >15 mmHg in two of five patients. In conclusion, we describe six young children with NO-associated pulmonary edema and pulmonary venous hypertension. Only two of these children had left-sided heart failure: Left atrial pressure as well as pulmonary artery occlusion pressure may not be helpful in identifying children at risk for NO-associated pulmonary edema.


Pulmonary edema Pulmonary hypertension Pediatric Nitric oxide Congenital heart disease Pulmonary veno-occlusive disease 



Anomalous pulmonary venous return


Atrioventricular canal


computed tomography


Major aorto-pulmonary collateral artery


Magnetic resonance imaging


Nitric oxide


Pulmonary artery pressure


Pediatric intensive care unit


  1. 1.
    Bocchi EA, Bacal F, Auler JO Jr, Carmone MJ, Bellotti G, Pileggi F (1994) Inhaled nitric oxide leading to pulmonary edema in stable severe heart failure. Am J Cardiol 74(1):70–72PubMedCrossRefGoogle Scholar
  2. 2.
    Caldarone CA, Najm HK, Kadletz M, Smallhorn JF, Freedom RM, Williams WG et al (1998) Relentless pulmonary vein stenosis after repair of total anomalous pulmonary venous drainage. Ann Thorac Surg 66(5):1514–1520PubMedCrossRefGoogle Scholar
  3. 3.
    Gao Y, Raj JU (2005) Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 288(2):L213–L226PubMedCrossRefGoogle Scholar
  4. 4.
    Holcomb BW Jr, Loyd JE, Ely EW, Johnson J, Robbins IM (2000) Pulmonary veno-occlusive disease: a case series and new observations. Chest 118(6):1671–1679PubMedCrossRefGoogle Scholar
  5. 5.
    Kulik TJ, Harris JE, McElhinney DB (2011) The impact of pulmonary venous hypertension on the pulmonary circulation in the young. Congenit Heart Dis 6(6):603–607PubMedCrossRefGoogle Scholar
  6. 6.
    Mandel J, Mark EJ, Hales CA (2000) Pulmonary veno-occlusive disease. Am J Respir Crit Care Med 162(5):1964–1973PubMedCrossRefGoogle Scholar
  7. 7.
    Montani D, Achouh L, Dorfmuller P, Le Pavec J, Sztrymf B, Tcherakian C et al (2008) Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore) 87(4):220–233CrossRefGoogle Scholar
  8. 8.
    Murakami T, Horigome H, Yamaki S, Nakao T, Hiramatsu Y, Matsui A (2003) Pulmonary veno-occlusive disease associated with partial anomalous pulmonary venous connection. Pediatr Int 45(6):747–750PubMedCrossRefGoogle Scholar
  9. 9.
    Palmer SM, Robinson LJ, Wang A, Gossage JR, Bashore T, Tapson VF (1998) Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. Chest 113(1):237–240PubMedCrossRefGoogle Scholar
  10. 10.
    Persson BP, Boels PJ, Lovdahl C, Rossi P, Arner A, Oldner A (2010) Endotoxin induces differentiated contractile responses in porcine pulmonary arteries and veins. J Vasc Res 48(3):206–218PubMedCrossRefGoogle Scholar
  11. 11.
    Preston IR, Klinger JR, Houtchens J, Nelson D, Mehta S, Hill NS (2002) Pulmonary edema caused by inhaled nitric oxide therapy in two patients with pulmonary hypertension associated with the CREST syndrome. Chest 121(2):656–659PubMedCrossRefGoogle Scholar
  12. 12.
    Scherrer U, Rexhaj E, Jayet PY, Allemann Y, Sartori C (2010) New insights in the pathogenesis of high-altitude pulmonary edema. Prog Cardiovasc Dis 52(6):485–492PubMedCrossRefGoogle Scholar
  13. 13.
    Simonneau G, Galie N, Rubin LJ, Langleben D, Seeger W, Domenighetti G et al. (2004) Clinical classification of pulmonary hypertension. J Am Coll Cardiol 43(12 Suppl S):5S–12SGoogle Scholar
  14. 14.
    Steudel W, Hurford WE, Zapol WM (1999) Inhaled nitric oxide: basic biology and clinical applications. Anesthesiology 91(4):1090–1121PubMedCrossRefGoogle Scholar
  15. 15.
    von Schnakenburg C, Peuster M, Norozi K, Roebl M, Maibohm M, Wessel A et al (2003) Acute pulmonary edema caused by epoprostenol infusion in a child with scimitar syndrome and pulmonary hypertension. Pediatr Crit Care Med 4(1):111–114CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Packer CS, Rhoades RA (1993) Pulmonary vein contracts in response to hypoxia. Am J Physiol 265(1 Pt 1):L87–L92Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • J. Scott Baird
    • 1
  • Vinod Havalad
    • 1
  • Linda Aponte-Patel
    • 1
  • Thyyar M. Ravindranath
    • 1
  • Tessie W. October
    • 1
  • Thomas J. Starc
    • 1
  • Arthur J. Smerling
    • 1
  1. 1.College of Physicians and SurgeonsChildren’s Hospital of New York-Presbyterian, Columbia UniversityNew YorkUSA

Personalised recommendations