Pediatric Cardiology

, Volume 33, Issue 6, pp 943–949

Cardiac Sodium Channel Nav1.5 Mutations and Cardiac Arrhythmia

Riley Symposium

Abstract

As a major cardiac voltage-gated sodium channel isoform in the heart, the Nav1.5 channel is essential for cardiac action potential initiation and subsequent propagation throughout the heart. Mutations of Nav1.5 have been linked to a variety of cardiac diseases such as long QT syndrome (LQTs), Brugada syndrome, cardiac conduction defect, atrial fibrillation, and dilated cardiomyopathy. The mutagenesis approach and heterologous expression systems are most frequently used to study the function of this channel. This review focuses primarily on recent findings of Nav1.5 mutations associated with type 3 long QT syndrome (LQT3) in particular. Understanding the functional changes of the Nav1.5 mutation may offer critical insight into the mechanism of long QT3 syndrome. In addition, this review provides the updated information on the current progress of using various experimental model systems to study primarily the long QT3 syndrome.

Keywords

Cardiac arrhythmia Cardiac sodium channel Sodium channel mutation 

References

  1. 1.
    Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C (1979) The steady-state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 379:137–142PubMedCrossRefGoogle Scholar
  2. 2.
    Bankston JR, Sampson KJ, Kateriya S, Glaaser IW, Malito DL, Chung WK, Kass RS (2007) A novel LQT-3 mutation disrupts an inactivation gate complex with distinct rate-dependent phenotypic consequences. Channels Austin 1:273–280PubMedGoogle Scholar
  3. 3.
    Bankston JR, Yue M, Chung W, Spyres M, Pass RH, Silver E, Sampson KJ, Kass RS (2007) A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response. PLoS One 2:e1258PubMedCrossRefGoogle Scholar
  4. 4.
    Bennett PB, Yazawa K, Makita N, George AL Jr (1995) Molecular mechanism for an inherited cardiac arrhythmia. Nature 376:683–685PubMedCrossRefGoogle Scholar
  5. 5.
    Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, George AL Jr (2003) Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 112:1019–1028PubMedGoogle Scholar
  6. 6.
    Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, van Der Hout AH, Mannens MM, Wilde AA (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213PubMedCrossRefGoogle Scholar
  7. 7.
    Catterall WA (2000) From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26:13–25PubMedCrossRefGoogle Scholar
  8. 8.
    Chandra R, Starmer CF, Grant AO (1998) Multiple effects of KPQ deletion mutation on gating of human cardiac Na+ channels expressed in mammalian cells. Am J Physiol 274:H1643–H1654PubMedGoogle Scholar
  9. 9.
    Cohen SA (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle: presence in terminal intercalated disks. Circulation 94:3083–3086PubMedCrossRefGoogle Scholar
  10. 10.
    Cusdin FS, Clare JJ, Jackson AP (2008) Trafficking and cellular distribution of voltage-gated sodium channels. Traffic 9:17–26PubMedCrossRefGoogle Scholar
  11. 11.
    Darbar D, Kannankeril PJ, Donahue BS, Kucera G, Stubblefield T, Haines JL, George AL Jr, Roden DM (2008) Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117:1927–1935PubMedCrossRefGoogle Scholar
  12. 12.
    Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation 103:1303–1310PubMedCrossRefGoogle Scholar
  13. 13.
    Fabritz L, Kirchhof P, Franz MR, Nuyens D, Rossenbacker T, Ottenhof A, Haverkamp W, Breithardt G, Carmeliet E, Carmeliet P (2003) Effect of pacing and mexiletine on dispersion of repolarisation and arrhythmias in DeltaKPQ SCN5A (long QT3) mice. Cardiovasc Res 57:1085–1093PubMedCrossRefGoogle Scholar
  14. 14.
    Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE III, Lee K, Pinnock R, Morgan K, Jackson AP, Vandenberg JI (2001) The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J Physiol 537:693–700PubMedCrossRefGoogle Scholar
  15. 15.
    Glaaser IW, Bankston JR, Liu H, Tateyama M, Kass RS (2006) A carboxyl-terminal hydrophobic interface is critical to sodium channel function: relevance to inherited disorders. J Biol Chem 281:24015–24023PubMedCrossRefGoogle Scholar
  16. 16.
    Goldin AL, Barchi RL, Caldwell JH, Hofmann F, Howe JR, Hunter JC, Kallen RG, Mandel G, Meisler MH, Netter YB, Noda M, Tamkun MM, Waxman SG, Wood JN, Catterall WA (2000) Nomenclature of voltage-gated sodium channels. Neuron 28:365–368PubMedCrossRefGoogle Scholar
  17. 17.
    Groenewegen WA, Bezzina CR, van Tintelen JP, Hoorntje TM, Mannens MM, Wilde AA, Jongsma HJ, Rook MB (2003) A novel LQT3 mutation implicates the human cardiac sodium channel domain IVS6 in inactivation kinetics. Cardiovasc Res 57:1072–1078PubMedCrossRefGoogle Scholar
  18. 18.
    Guzadhur L, Pearcey SM, Duehmke RM, Jeevaratnam K, Hohmann AF, Zhang Y, Grace AA, Lei M, Huang CL (2010) Atrial arrhythmogenicity in aged Scn5a+/DeltaKPQ mice modeling long QT type 3 syndrome and its relationship to Na+ channel expression and cardiac conduction. Pflugers Arch 460:593–601PubMedCrossRefGoogle Scholar
  19. 19.
    Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472PubMedGoogle Scholar
  20. 20.
    Horne AJ, Eldstrom J, Sanatani S, Fedida D (2011) A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage dependence of activation. Heart Rhythm 8:770–777PubMedCrossRefGoogle Scholar
  21. 21.
    Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256:839–842PubMedCrossRefGoogle Scholar
  22. 22.
    Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, Feldman O, Gepstein A, Arbel G, Hammerman H, Boulos M, Gepstein L (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471:225–229PubMedCrossRefGoogle Scholar
  23. 23.
    Jarecki BW, Piekarz AD, Jackson JO II, Cummins TR (2010) Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 120:369–378PubMedCrossRefGoogle Scholar
  24. 24.
    Jiang C, Atkinson D, Towbin JA, Splawski I, Lehmann MH, Li H, Timothy K, Taggart RT, Schwartz PJ, Vincent GM et al (1994) Two long QT syndrome loci map to chromosomes 3 and 7 with evidence for further heterogeneity. Nat Genet 8:141–147PubMedCrossRefGoogle Scholar
  25. 25.
    Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL (1990) Primary structure and expression of a sodium-channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242PubMedCrossRefGoogle Scholar
  26. 26.
    Keller DI, Acharfi S, Delacretaz E, Benammar N, Rotter M, Pfammatter JP, Fressart V, Guicheney P, Chahine M (2003) A novel mutation in SCN5A, delQKP 1507–1509, causing long QT syndrome: role of Q1507 residue in sodium-channel inactivation. J Mol Cell Cardiol 35:1513–1521PubMedCrossRefGoogle Scholar
  27. 27.
    Lin EC, Holzem KM, Anson BD, Moungey BM, Balijepalli SY, Tester DJ, Ackerman MJ, Delisle BP, Balijepalli RC, January CT (2010) Properties of WT and mutant hERG K(+) channels expressed in neonatal mouse cardiomyocytes. Am J Physiol Heart Circ Physiol 298:H1842–H1849PubMedCrossRefGoogle Scholar
  28. 28.
    Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc Natl Acad Sci USA 99:4073–4078PubMedCrossRefGoogle Scholar
  29. 29.
    Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single-ventricular myocytes from mouse heart. Circulation 109:1421–1427PubMedCrossRefGoogle Scholar
  30. 30.
    Makita N, Bennett PB Jr, George AL Jr (1994) Voltage-gated Na+ channel beta 1 subunit mRNA expressed in adult human skeletal muscle, heart, and brain is encoded by a single gene. J Biol Chem 269:7571–7578PubMedGoogle Scholar
  31. 31.
    Makita N, Bennett PB, George AL Jr (1996) Molecular determinants of beta 1 subunit-induced gating modulation in voltage-dependent Na+ channels. J Neurosci 16:7117–7127PubMedGoogle Scholar
  32. 32.
    Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuhara S, Mochizuki N, Makiyama T, Itoh H, Christiansen M, McKeown P, Miyamoto K, Kamakura S, Tsutsui H, Schwartz PJ, George AL Jr, Roden DM (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J Clin Invest 118:2219–2229PubMedGoogle Scholar
  33. 33.
    McNair WP, Sinagra G, Taylor MR, Di Lenarda A, Ferguson DA, Salcedo EE, Slavov D, Zhu X, Caldwell JH, Mestroni L (2011) SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J Am Coll Cardiol 57:2160–2168PubMedCrossRefGoogle Scholar
  34. 34.
    Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flugel L, Dorn T, Goedel A, Hohnke C, Hofmann F, Seyfarth M, Sinnecker D, Schomig A, Laugwitz KL (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363:1397–1409PubMedCrossRefGoogle Scholar
  35. 35.
    Morgan K, Stevens EB, Shah B, Cox PJ, Dixon AK, Lee K, Pinnock RD, Hughes J, Richardson PJ, Mizuguchi K, Jackson AP (2000) Beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. Proc Natl Acad Sci USA 97:2308–2313PubMedCrossRefGoogle Scholar
  36. 36.
    Nerbonne JM (2004) Studying cardiac arrhythmias in the mouse: a reasonable model for probing mechanisms? Trends Cardiovasc Med 14:83–93PubMedCrossRefGoogle Scholar
  37. 37.
    Nuss HB, Chiamvimonvat N, Perez-Garcia MT, Tomaselli GF, Marban E (1995) Functional association of the beta 1 subunit with human cardiac (hH1) and rat skeletal muscle (mu 1) sodium-channel alpha subunits expressed in Xenopus oocytes. J Gen Physiol 106:1171–1191PubMedCrossRefGoogle Scholar
  38. 38.
    Nuyens D, Stengl M, Dugarmaa S, Rossenbacker T, Compernolle V, Rudy Y, Smits JF, Flameng W, Clancy CE, Moons L, Vos MA, Dewerchin M, Benndorf K, Collen D, Carmeliet E, Carmeliet P (2001) Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7:1021–1027PubMedCrossRefGoogle Scholar
  39. 39.
    Papadatos GA, Wallerstein PM, Head CE, Ratcliff R, Brady PA, Benndorf K, Saumarez RC, Trezise AE, Huang CL, Vandenberg JI, Colledge WH, Grace AA (2002) Slowed conduction and ventricular tachycardia after targeted disruption of the cardiac sodium channel gene Scn5a. Proc Natl Acad Sci USA 99:6210–6215PubMedCrossRefGoogle Scholar
  40. 40.
    Persson F, Andersson B, Duker G, Jacobson I, Carlsson L (2007) Functional effects of the late sodium current inhibition by AZD7009 and lidocaine in rabbit isolated atrial and ventricular tissue and Purkinje fibre. Eur J Pharmacol 558:133–143PubMedCrossRefGoogle Scholar
  41. 41.
    Remme CA, Verkerk AO, Nuyens D, van Ginneken AC, van Brunschot S, Belterman CN, Wilders R, van Roon MA, Tan HL, Wilde AA, Carmeliet P, de Bakker JM, Veldkamp MW, Bezzina CR (2006) Overlap syndrome of cardiac sodium channel disease in mice carrying the equivalent mutation of human SCN5A-1795insD. Circulation 114:2584–2594PubMedCrossRefGoogle Scholar
  42. 42.
    Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc Natl Acad Sci USA 86:8170–8174PubMedCrossRefGoogle Scholar
  43. 43.
    Ruan Y, Denegri M, Liu N, Bachetti T, Seregni M, Morotti S, Severi S, Napolitano C, Priori SG (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383PubMedCrossRefGoogle Scholar
  44. 44.
    Sato C, Sato M, Iwasaki A, Doi T, Engel A (1998) The sodium channel has four domains surrounding a central pore. J Struct Biol 121:314–325PubMedCrossRefGoogle Scholar
  45. 45.
    Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AA, Escande D, Mannens MM, Le Marec H (1999) Cardiac conduction defects associate with mutations in SCN5A. Nat Genet 23:20–21PubMedCrossRefGoogle Scholar
  46. 46.
    Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, Mannens MM, Balser JR, Tan HL, Bezzina CR, Wilde AA (2005) A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease, and Brugada syndrome in two families. J Mol Cell Cardiol 38:969–981PubMedCrossRefGoogle Scholar
  47. 47.
    Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603PubMedCrossRefGoogle Scholar
  48. 48.
    Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA, Balser JR (2001) A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409:1043–1047PubMedCrossRefGoogle Scholar
  49. 49.
    Tian XL, Yong SL, Wan X, Wu L, Chung MK, Tchou PJ, Rosenbaum DS, Van Wagoner DR, Kirsch GE, Wang Q (2004) Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 61:256–267PubMedCrossRefGoogle Scholar
  50. 50.
    Wang DW, Yazawa K, George AL Jr, Bennett PB (1996) Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci USA 93:13200–13205PubMedCrossRefGoogle Scholar
  51. 51.
    Wang DW, Makita N, Kitabatake A, Balser JR, George AL Jr (2000) Enhanced Na(+) channel intermediate inactivation in Brugada syndrome. Circ Res 87:E37–E43PubMedCrossRefGoogle Scholar
  52. 52.
    Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRefGoogle Scholar
  53. 53.
    Wehrens XH, Abriel H, Cabo C, Benhorin J, Kass RS (2000) Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel alpha-subunit: a computational analysis. Circulation 102:584–590PubMedCrossRefGoogle Scholar
  54. 54.
    Wehrens XH, Rossenbacker T, Jongbloed RJ, Gewillig M, Heidbuchel H, Doevendans PA, Vos MA, Wellens HJ, Kass RS (2003) A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I–II linker in inactivation gating. Hum Mutat 21:552PubMedCrossRefGoogle Scholar
  55. 55.
    Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM, George AL Jr (1999) Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation 99:3165–3171PubMedCrossRefGoogle Scholar
  56. 56.
    West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci USA 89:10910–10914PubMedCrossRefGoogle Scholar
  57. 57.
    Yong SL, Ni Y, Zhang T, Tester DJ, Ackerman MJ, Wang QK (2007) Characterization of the cardiac sodium channel SCN5A mutation, N1325S, in single murine ventricular myocytes. Biochem Biophys Res Commun 352:378–383PubMedCrossRefGoogle Scholar
  58. 58.
    Yu FH, Catterall WA (2003) Overview of the voltage-gated sodium-channel family. Genome Biol 4:207PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pediatrics, Riley Heart Research Center, Herman B. Wells Center for Pediatric ResearchIndiana University School of MedicineIndianapolisUSA
  2. 2.Department of PharmacologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations