Pediatric Cardiology

, Volume 33, Issue 6, pp 980–987

Genetic Testing of Inherited Arrhythmias

Riley Symposium


Syncope and risk of sudden death due to ventricular tachyarrhythmia are the common manifestations of several inherited disorders. Abnormalities of the genetic makeup may directly affect proteins controlling cardiac excitability in a structurally normal heart. Other diseases manifest primarily with ventricular arrhythmias even though the genetic mutations cause structural abnormalities of the myocardium. This is the case of arrhythmogenic right ventricular cardiomyopathy and hypertrophic cardiomyopathy. Groundbreaking discoveries, starting from the 1990s until the beginning of the current decade, have provided fundamental knowledge on the major genes that confer an increased risk of arrhythmias and sudden death. Stems of such knowledge are the availability of genetic diagnosis, genotype–phenotype correlation, and genotype-based risk stratification schemes currently used in the clinical practice. This review provides a concise description of the known genes and key mechanisms involved in the pathogenesis of inherited arrhythmias. In addition, we outline possibilities, limitations, advantages, and potential threats of genetically screening for these genes.


Genetics Cardiac arrhythmias Sudden death Ion channels Cardiac electrophysiology 


  1. 1.
    Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y et al (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449PubMedCrossRefGoogle Scholar
  2. 2.
    Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M et al (2006) A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 38:644–651PubMedCrossRefGoogle Scholar
  3. 3.
    Bauce B, Nava A, Beffagna G, Basso C, Lorenzon A, Smaniotto G et al (2010) Multiple mutations in desmosomal proteins encoding genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 7:22–29PubMedCrossRefGoogle Scholar
  4. 4.
    Bellocq C, van Ginneken AC, Bezzina CR, Alders M, Escande D, Mannens MM et al (2004) Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 109:2394–2397PubMedCrossRefGoogle Scholar
  5. 5.
    Benhorin J, Taub R, Goldmit M, Kerem B, Kass RS, Windman I et al (2000) Effects of flecainide in patients with new SCN5A mutation: Mutation-specific therapy for long-QT syndrome? Circulation 101:1698–1706PubMedCrossRefGoogle Scholar
  6. 6.
    Bezzina CR, Verkerk AO, Busjahn A, Jeron A, Erdmann J, Koopmann TT et al (2003) A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 59:27–36PubMedCrossRefGoogle Scholar
  7. 7.
    Bloise R, Napolitano C, Timothy KW, Pontes Cavalcanti D, Szepesvary E, Drago F et al (2007) Clinical profile and risk of sudden death in children with Timothy syndrome. Circulation 114(Suppl II):502Google Scholar
  8. 8.
    Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y et al (2008) CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc Natl Acad Sci USA 105:4477–4482PubMedCrossRefGoogle Scholar
  9. 9.
    Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y, Xu WY et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254PubMedCrossRefGoogle Scholar
  10. 10.
    Chen L, Marquardt ML, Tester DJ, Sampson KJ, Ackerman MJ, Kass RS (2007) Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proc Natl Acad Sci USA 104:20990–20995PubMedCrossRefGoogle Scholar
  11. 11.
    Crotti L, Lundquist AL, Insolia R, Pedrazzini M, Ferrandi C, De Ferrari GM et al (2005) KCNH2-K897T Is a genetic modifier of latent congenital long-QT syndrome. Circulation 112:1251–1258PubMedCrossRefGoogle Scholar
  12. 12.
    Crotti L, Monti MC, Insolia R, Peljto A, Goosen A, Brink PA et al (2009) NOS1AP is a genetic modifier of the long-QT syndrome. Circulation 120:1657–1663PubMedCrossRefGoogle Scholar
  13. 13.
    Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD et al (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1:209–218PubMedCrossRefGoogle Scholar
  14. 14.
    George CH, Jundi H, Thomas NL, Fry DL, Lai FA (2007) Ryanodine receptors and ventricular arrhythmias: Emerging trends in mutations, mechanisms and therapies. J Mol Cell Cardiol 42:34–50PubMedCrossRefGoogle Scholar
  15. 15.
    Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A et al (2007) Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature 448:353–357PubMedCrossRefGoogle Scholar
  16. 16.
    Gui J, Wang T, Trump D, Zimmer T, Lei M (2010) Mutation-specific effects of polymorphism H558R in SCN5A-related sick sinus syndrome. J Cardiovasc Electrophysiol 21(5):564–573PubMedCrossRefGoogle Scholar
  17. 17.
    Hu D, Hl Martinez, Burashnikov E, Springer M, Wu Y, Varro A et al (2009) A mutation in the b3 subunit of the cardiac sodium channel associated with Brugada ECG phenotype. Circ Cardiovasc Genet 2(3):270–278PubMedCrossRefGoogle Scholar
  18. 18.
    Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C (2005) Compound and double mutations in patients with hypertrophic cardiomyopathy: Implications for genetic testing and counselling. J Med Genet 42:e59PubMedCrossRefGoogle Scholar
  19. 19.
    Juang JM, Chern YR, Tsai CT, Chiang FT, Lin JL, Hwang JJ et al (2006) The association of human connexin 40 genetic polymorphisms with atrial fibrillation. Int J Cardiol 116(1):107–112PubMedCrossRefGoogle Scholar
  20. 20.
    Kapa S, Tester DJ, Salisbury BA, Harris-Kerr C, Pungliya MS, Alders M et al (2009) Genetic testing for long-QT syndrome: distinguishing pathogenic mutations from benign variants. Circulation 120:1752–1760PubMedCrossRefGoogle Scholar
  21. 21.
    Keren A, Syrris P, McKenna WJ (2008) Hypertrophic cardiomyopathy: The genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med 5:747CrossRefGoogle Scholar
  22. 22.
    Knollmann BC, Chopra N, Hlaing T, Akin B, Yang T, Ettensohn K et al (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature Ca2+ release, and catecholaminergic polymorphic ventricular tachycardia. J Clin Invest 116:2510–2520PubMedGoogle Scholar
  23. 23.
    Kobori A, Sarai N, Shimizu W, Nakamura Y, Murakami Y, Makiyama T et al (2004) Additional gene variants reduce effectiveness of beta-blockers in the LQT1 form of long QT syndrome. J Cardiovasc Electrophysiol 15:190–199PubMedCrossRefGoogle Scholar
  24. 24.
    Lahat H, Pras E, Olender T, Avidan N, Ben Asher E, Man O et al (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69:1378–1384PubMedCrossRefGoogle Scholar
  25. 25.
    Liu N, Colombi B, Memmi M, Zissimopoulos S, Rizzi N, Negri S et al (2006) Arrhythmogenesis in catecholaminergic polymorphic ventricular tachycardia. Insights from a RyR2 R4496C knock-in mouse model. Circ Res 99:292–298PubMedCrossRefGoogle Scholar
  26. 26.
    Liu N, Rizzi N, Boveri L, Priori SG (2009) Ryanodine receptor and calsequestrin in arrhythmogenesis: What we have learnt from genetic diseases and transgenic mice. J Mol Cell Cardiol 46:149–159PubMedCrossRefGoogle Scholar
  27. 27.
    London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S et al (2007) Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116:2260–2268PubMedCrossRefGoogle Scholar
  28. 28.
    Marroni F, Pfeufer A, Aulchenko YS, Franklin CS, Isaacs A, Pichler I et al (2009) A genome-wide association scan of RR and QT interval duration in 3 European genetically isolated populations: the EUROSPAN project. Circ Cardiovasc Genet 2:322–328PubMedCrossRefGoogle Scholar
  29. 29.
    Mohler PJ, Splawski I, Napolitano C, Bottelli G, Sharpe L, Timothy K et al (2004) A cardiac arrhythmia syndrome caused by loss of ankyrin-B function. Proc Natl Acad Sci USA 101:9137–9142PubMedCrossRefGoogle Scholar
  30. 30.
    Mok NS, Priori SG, Napolitano C, Chan NY, Chahine M, Baroudi G (2003) A newly characterized SCN5A mutation underlying Brugada syndrome unmasked by hyperthermia. J Cardiovascm Electrophysiol 14:407–411CrossRefGoogle Scholar
  31. 31.
    Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL et al (2007) Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 115:2481–2489PubMedCrossRefGoogle Scholar
  32. 32.
    Napolitano C, Schwartz PJ, Brown AM, Ronchetti E, Bianchi L, Pinnavaia A et al (2000) Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. J Cardiovasc Electrophysiol 11:691–696PubMedCrossRefGoogle Scholar
  33. 33.
    Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, Bottelli G et al (2005) Genetic testing in the long QT syndrome: Development and validation of an efficient approach to genotyping in clinical practice. JAMA 294:2975–2980PubMedCrossRefGoogle Scholar
  34. 34.
    Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C et al (2009) Common variants at ten loci modulate the QT interval duration in the QTSCD study. Nat Genet 41:407–414PubMedCrossRefGoogle Scholar
  35. 35.
    Priori SG, Napolitano C (2005) Cardiac and skeletal muscle disorders caused by mutations in the intracellular Ca2+ release channels. J Clin Invest 115:2033–2038PubMedCrossRefGoogle Scholar
  36. 36.
    Priori SG, Napolitano C (2006) Role of genetic analyses in cardiology: Part I: Mendelian diseases: Cardiac channelopathies. Circulation 113:1130–1135PubMedCrossRefGoogle Scholar
  37. 37.
    Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R et al (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103:196–200PubMedCrossRefGoogle Scholar
  38. 38.
    Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M et al (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348:1866–1874PubMedCrossRefGoogle Scholar
  39. 39.
    Priori SG, Napolitano C, Schwartz PJ, Grillo M, Bloise R, Ronchetti E et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292:1341–1344PubMedCrossRefGoogle Scholar
  40. 40.
    Rizzi N, Liu N, Napolitano C, Nori A, Turcato F, Colombi B et al (2008) Unexpected structural and functional consequences of the R33Q homozygous mutation in cardiac calsequestrin: a complex arrhythmogenic cascade in a knock in mouse model. Circ Res 103:298–306PubMedCrossRefGoogle Scholar
  41. 41.
    Rossenbacker T, Bloise R, De Giuli L, Raytcheva-Buono EV, Theilade J, Keegan R et al (2007) Catecholaminergic polymorphic ventricular tachycardia: genetics, natural history and response to therapy. Circulation 116(Suppl II):179Google Scholar
  42. 42.
    Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG (2007) Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation 116:1137–1144PubMedCrossRefGoogle Scholar
  43. 43.
    Ruan Y, Liu N, Priori SG (2009) Sodium channel mutations and arrhythmias. Nat Rev Cardiol 6:337–348PubMedCrossRefGoogle Scholar
  44. 44.
    Ruan Y, Denegri M, Liu N, Bachetti T, Seregni M, Morotti S et al (2010) Trafficking defects and gating abnormalities of a novel SCN5A mutation question gene-specific therapy in long QT syndrome type 3. Circ Res 106:1374–1383PubMedCrossRefGoogle Scholar
  45. 45.
    Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C et al (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103:89–95PubMedCrossRefGoogle Scholar
  46. 46.
    Smith JG, Lowe JK, Kovvali S, Maller JB, Salit J, Daly MJ et al (2009) Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. Heart Rhythm 6:634–641PubMedCrossRefGoogle Scholar
  47. 47.
    Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31PubMedCrossRefGoogle Scholar
  48. 48.
    Tan BH, Valdivia CR, Rok BA, Ye B, Ruwaldt KM, Tester DJ et al (2005) Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2:741–747PubMedCrossRefGoogle Scholar
  49. 49.
    Tester DJ, Will ML, Haglund CM, Ackerman MJ (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517PubMedCrossRefGoogle Scholar
  50. 50.
    Tomas M, Napolitano C, De Giuli L, Bloise R, Subirana I, Malovini A et al (2010) Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. J Am Coll Cardiol 55:2745–2752PubMedCrossRefGoogle Scholar
  51. 51.
    Ueda K, Valdivia C, Medeiros-Domingo A, Tester DJ, Vatta M, Farrugia G et al (2008) Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proc Natl Acad Sci USA 105:9355–9360PubMedCrossRefGoogle Scholar
  52. 52.
    Vatta M, Ackerman MJ, Ye B, Makielski JC, Ughanze EE, Taylor EW et al (2006) Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation 114:2104–2112PubMedCrossRefGoogle Scholar
  53. 53.
    Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113:784–792PubMedCrossRefGoogle Scholar
  54. 54.
    Watanabe H, Koopmann TT, Le Scouarnec S, Yang T, Ingram CR, Schott JJ et al (2008) Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 118:2260–2268PubMedGoogle Scholar
  55. 55.
    Westenskow P, Splawski I, Timothy KW, Keating MT, Sanguinetti MC (2004) Compound mutations: A common cause of severe long-QT syndrome. Circulation 109:1834–1841PubMedCrossRefGoogle Scholar
  56. 56.
    Wilton SB, Anderson TJ, Parboosingh J, Bridge PJ, Exner DV, Forrest D et al (2008) Polymorphisms in multiple genes are associated with resting heart rate in a stepwise allele-dependent manner. Heart Rhythm 5:694–700PubMedCrossRefGoogle Scholar
  57. 57.
    Yano M, Ikeda Y, Matsuzaki M (2005) Altered intracellular Ca2+ handling in heart failure. J Clin Invest 115:556–564PubMedGoogle Scholar
  58. 58.
    Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M et al (2006) ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): Developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114:e385–e484PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Molecular Cardiology LaboratoriesIRCCS Fondazione Salvatore MaugeriPaviaItaly
  2. 2.Cadiovascular Genetics, Leon Charney Division of CardiologyNew York University Medical CenterNew YorkUSA

Personalised recommendations