Pediatric Cardiology

, Volume 33, Issue 6, pp 950–958

Recapitulating Long-QT Syndrome Using Induced Pluripotent Stem Cell Technology

  • Ralf J. Dirschinger
  • Alexander Goedel
  • Alessandra Moretti
  • Karl-Ludwig Laugwitz
  • Daniel Sinnecker
Riley Symposium

Abstract

The generation of patient-specific stem cells by reprogramming somatic cells to induced pluripotent stem cells (iPSC) provides the basis for a promising new type of in vitro disease models. Patient-specific iPSC derived from individuals with hereditary disorders can be differentiated into somatic cells in vitro, thus allowing the pathophysiology of the diseases to be studied on a cellular level. Different types of long-QT syndrome have been successfully modeled using this approach, demonstrating that the iPSC-derived patient-specific cardiomyocytes recapitulated key features of the disease in vitro. This approach will likely serve to model other monogenetic or polygenetic cardiovascular disorders in the future. Moreover, test platforms based on patient-specific iPSC could be used to test the potential of drug candidates to induce QT-interval prolongation or other unwanted side effects, screen for novel cardiovascular drugs, or to tailor medical therapy to the specific needs of a single patient.

Keywords

LQT Disease modeling IPS cells 

References

  1. 1.
    Antzelevitch C (2005) Role of transmural dispersion of repolarization in the genesis of drug-induced torsades de pointes. Heart Rhythm 2(Suppl 2):S9–S15PubMedCrossRefGoogle Scholar
  2. 2.
    Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D et al (2005) Brugada syndrome: report of the second consensus conference: endorsed by the heart rhythm society and the European heart rhythm association. Circulation 111(5):659PubMedCrossRefGoogle Scholar
  3. 3.
    Azaouagh A, Churzidse S, Konorza T, Erbel R (2011) Arrhythmogenic right ventricular cardiomyopathy/dysplasia: a review and update. Clin Res Cardiol 100:383–394PubMedCrossRefGoogle Scholar
  4. 4.
    Beffagna G, Occhi G, Nava A, Vitiello L, Ditadi A, Basso C et al (2005) Regulatory mutations in transforming growth factor-beta3 gene cause arrhythmogenic right ventricular cardiomyopathy type 1. Cardiovasc Res 65:366–373PubMedCrossRefGoogle Scholar
  5. 5.
    Brown ME, Rondon E, Rajesh D, Mack A, Lewis R, Feng X et al (2010) Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS One 5(6):e11373PubMedCrossRefGoogle Scholar
  6. 6.
    Dessertenne F (1966) La tachycardie ventriculaire à deux foyers opposés variables. Arch Mal Coeur 59:263–272PubMedGoogle Scholar
  7. 7.
    Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280PubMedCrossRefGoogle Scholar
  8. 8.
    Eckardt L, Haverkamp W, Borggrefe M, Breithardt G (1998) Experimental models of torsade de pointes. Cardiovasc Res 39:178–193PubMedCrossRefGoogle Scholar
  9. 9.
    Fatima A, Xu G, Shao K, Papadopoulos S, Lehmann M, Arnáiz-Cot JJ et al (2011) Cell Physiol Biochem 28:592–597CrossRefGoogle Scholar
  10. 10.
    Gaita F, Giustetto C, Bianchi F, Wolpert C, Schimpf R, Riccardi R et al (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108(8):965–970PubMedCrossRefGoogle Scholar
  11. 11.
    Giorgi MA, Bolanos R, Gonzalez CD, Di Girolamo G (2010) QT interval prolongation: preclinical and clinical testing arrhythmogenesis in drugs and regulatory implications. Curr Drug Saf 5:54–57PubMedCrossRefGoogle Scholar
  12. 12.
    Giustetto C, Di Monte F, Wolpert C, Borggrefe M, Schimpf R, Sbragia P et al (2006) Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart 27(20):2440CrossRefGoogle Scholar
  13. 13.
    He J-Q, Ma Y, Lee Y, Thomson JA, Kamp TJ (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes. Action potential characterization. Circ Res 93:32–39PubMedCrossRefGoogle Scholar
  14. 14.
    Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A et al (2011) Modelling the long-QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229PubMedCrossRefGoogle Scholar
  15. 15.
    Jung CB, Moretti A, Mederos Y Schnitzler M, Iop L, Storch U et al (2011) Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med. doi:10.1002/emmm.201100194 Google Scholar
  16. 16.
    Kannankeril PJ, Roden DM, Norris KJ, Whalen SP, George AL Jr, Murray KT (2005) Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm 2(2):134–140PubMedCrossRefGoogle Scholar
  17. 17.
    Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869PubMedCrossRefGoogle Scholar
  18. 18.
    Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH (2002) Timing of new black box warnings and withdrawals for prescription medications. JAMA 287:2215–2220PubMedCrossRefGoogle Scholar
  19. 19.
    Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–406PubMedCrossRefGoogle Scholar
  20. 20.
    Lehnart SE, Ackerman MJ, Benson W, Brugada R, Clancy CE, Donahue JK et al (2007) Inherited arrhythmias. A national heart, lung, and blood institute and office of rare diseases workshop consensus report about the diagnosis, phenotyping, molecular mechanisms, and therapeutic approaches for primary cardiomyopathies of gene mutations affecting ion channel function. Circulation 116:2325–2345PubMedCrossRefGoogle Scholar
  21. 21.
    Maltsev VA, Rohwedel J, Hescheler J, Wobus AM (1993) Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1):41–50PubMedCrossRefGoogle Scholar
  22. 22.
    Maron BJ, Thompson PD, Puffer JC, McGrew CA, Strong WB, Douglas PS et al (1996) Cardiovascular preparticipation screening of competitive athletes. A statement for health professionals from the sudden death committee (clinical cardiology) and congenital cardiac defects committee (cardiovascular disease in the young), American heart association. Circulation 94:850–856PubMedCrossRefGoogle Scholar
  23. 23.
    Matsa E, Rajamohan D, Dick E, Young L, Mellor I, Stainforth A et al (2011) Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long-QT syndrome type 2 mutation. Eur Heart J 32(8):952–962PubMedCrossRefGoogle Scholar
  24. 24.
    Merner ND, Hodgkinson KA, Haywood AF, Connors S, French VM, Drenckhahn JD et al (2008) Arrhythmogenic right ventricular cardiomyopathy type 5 is a fully penetrant, lethal arrhythmic disorder caused by a missense mutation in the TMEM43 gene. Am J Hum Genet 82:809–821PubMedCrossRefGoogle Scholar
  25. 25.
    Moretti A, Bellin M, Welling A, Jung CB, Lam JT, Bott-Flügel L et al (2010) Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N Engl J Med 363(15):1397–1409PubMedCrossRefGoogle Scholar
  26. 26.
    Novak A, Shtrichman R, Germanguz I, Segev H, Zeevi-Levin N, Fishman B et al (2010) Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles using a single excisable lentivirus. Cell Reprogram 12(6):665–678PubMedCrossRefGoogle Scholar
  27. 27.
    Novak A, Barad L, Zeevi-Levin N, Shick R, Shtreichman R, Lorber A et al (2011) Cardiomyocytes generated from CPVT(D307H) patients are arrhythmogenic in response to β-adrenergic stimulation. J Cell Mol Med 16(3):468–482CrossRefGoogle Scholar
  28. 28.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317PubMedCrossRefGoogle Scholar
  29. 29.
    Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT et al (2011) Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation 123:23–30PubMedCrossRefGoogle Scholar
  30. 30.
    Priori S, Chen SRW (2011) Inherited dysfunction of sarcoplasmic reticulum Ca2+ handling and arrhythmogenesis. Circ Res 108:871–883PubMedCrossRefGoogle Scholar
  31. 31.
    Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C et al (2003) Hypertrophic cardiomyopathy. Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232PubMedCrossRefGoogle Scholar
  32. 32.
    Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81:299–307PubMedCrossRefGoogle Scholar
  33. 33.
    Schmitt N, Calloe K, Nielsen NH, Buschmann M, Speckmann EJ, Schulze-Bahr E et al (2007) The novel C-terminal KCNQ1 mutation M520R alters protein trafficking. Biochem Biophys Res Commun 358(1):304–310PubMedCrossRefGoogle Scholar
  34. 34.
    Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G et al (2009) Prevalence of the congenital long-QT syndrome. Circulation 120:1761–1767PubMedCrossRefGoogle Scholar
  35. 35.
    Sidhu KS (2011) New approaches for the generation of induced pluripotent stem cells. Expert Opin Biol Ther 11(5):569–579PubMedCrossRefGoogle Scholar
  36. 36.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  37. 37.
    Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR et al (2003) Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107:1912–1916PubMedCrossRefGoogle Scholar
  38. 38.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  39. 39.
    Thomas D, Khali M, Alter M, Schweizer PA, Karle CA, Wimmer AB et al (2010) Biophysical characterization of KCNQ1 P320 mutations linked to long QT syndrome 1. J Mol Cell Cardiol 48(1):230–237PubMedCrossRefGoogle Scholar
  40. 40.
    Tiburcy M, Didié M, Boy O, Christalla P, Doeker S, Naito H, Karikkineth BC et al (2011) Terminal differentiation, advanced organotypic maturation, and modeling of hypertrophic growth in engineered heart tissue. Circ Res 109(10):1105–1114PubMedCrossRefGoogle Scholar
  41. 41.
    Tiso N, Stephan DA, Nava A, Bagattin A, Devaney JM, Stanchi F et al (2001) Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum Mol Genet 10:189–194PubMedCrossRefGoogle Scholar
  42. 42.
    Tran TH, Wang X, Browne C, Zang Y, Schinke M, Izumo S et al (2009) Wnt3a-induced mesoderm formation and cardiomyogenesis in human embryonic stem cells. Stem Cells 27:1869–1878PubMedCrossRefGoogle Scholar
  43. 43.
    Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD et al (2011) Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47–59PubMedCrossRefGoogle Scholar
  44. 44.
    van Tintelen JP, Entius MM, Bhuiyan ZA, Jongbloed R, Wiesfeld ACP, Wilde AAM et al (2006) Plakophilin-2 mutations are the major determinant of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation 113:1650–1658PubMedCrossRefGoogle Scholar
  45. 45.
    Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656PubMedCrossRefGoogle Scholar
  46. 46.
    Wilde AA, Antzelevitch C, Borggrefe M, Brugada J, Brugada R, Brugada P et al (2002) Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J 23(21):1648PubMedGoogle Scholar
  47. 47.
    Wu G, Ai T, Kim JJ, Mohapatra B, Xi Y, Li Z et al (2008) α-1-syntrophin mutation and the long-QT syndrome: a disease of sodium channel disruption. Circ Arrhythm Electrophysiol 1(3):193–201PubMedCrossRefGoogle Scholar
  48. 48.
    Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC et al (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105(16):1943–1948PubMedCrossRefGoogle Scholar
  49. 49.
    Yang Y, Yang Y, Liang B, Liu J, Li J, Grunnet M et al (2010) Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet 86:872–880PubMedCrossRefGoogle Scholar
  50. 50.
    Yazawa M, Hsue B, Jia X, Pasca A, Bernstein JA, Hallmayer J et al (2011) Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471(7337):230–234PubMedCrossRefGoogle Scholar
  51. 51.
    Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW (2009) Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc Natl Acad Sci USA 106(24):9826–9830PubMedCrossRefGoogle Scholar
  52. 52.
    Yu J, Vodyanìk MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ralf J. Dirschinger
    • 1
  • Alexander Goedel
    • 1
  • Alessandra Moretti
    • 1
  • Karl-Ludwig Laugwitz
    • 1
  • Daniel Sinnecker
    • 1
  1. 1.Medizinische Klinik-KardiologieKlinikum rechts der Isar—Technische Universität MünchenMünchenGermany

Personalised recommendations