Pediatric Cardiology

, Volume 33, Issue 6, pp 900–906 | Cite as

Electrophysiological Patterning of the Heart

  • Bastiaan J. Boukens
  • Vincent M. Christoffels
Riley Symposium


In the adult heart, electrophysiological heterogeneity is present to guide activation and contraction. A change in electrophysiological heterogeneity, for example, during disease, can contribute to arrhythmogenesis. During development, spatial and temporal patterns of transcriptional activity regulate the localized expression of ion channels that cause electrophysiological heterogeneity throughout the heart. If we gain insight into the regulating processes that generate the electrophysiological characteristics and factors involved during development, we can use this knowledge in the search for new therapeutic targets. In this review, we discuss which factors guide the electrical patterning of atrioventricular conduction system and ventricles and how this patterning relates to arrhythmogenic disease in patients.


Conduction system Patterning Arrhythmia Atrioventricular AV 



We thank Ruben Coronel for critical reading of the manuscript.


  1. 1.
    Aanhaanen WT, Boukens BJ, Sizarov A, Wakker V, de Gier-de VC, van Ginneken AC et al (2011) Defective Tbx2-dependent patterning of the atrioventricular canal myocardium causes accessory pathway formation in mice. J Clin Invest 121:534–544PubMedCrossRefGoogle Scholar
  2. 2.
    Aanhaanen WT, Brons JF, Dominguez JN, Rana MS, Norden J, Airik R et al (2009) The Tbx2 + primary myocardium of the atrioventricular canal forms the atrioventricular node and the base of the left ventricle. Circ Res 104:1267–1274PubMedCrossRefGoogle Scholar
  3. 3.
    Aanhaanen WT, Mommersteeg MT, Norden J, Wakker V, de Gier-de VC, Anderson RH et al (2010) Developmental origin, growth, and three-dimensional architecture of the atrioventricular conduction axis of the mouse heart. Circ Res 107:728–736PubMedCrossRefGoogle Scholar
  4. 4.
    Akhtar M, Damato AN, Batsford WP, Ruskin JN, Ogunkelu JB, Vargas G (1974) Demonstration of re-entry within the His-Purkinje system in man. Circulation 50:1150–1162PubMedCrossRefGoogle Scholar
  5. 5.
    Anderson RH, Ho SY, Gillette PC, Becker AE (1996) Mahaim, Kent and abnormal atrioventricular conduction. Cardiovasc Res 31:480–491PubMedGoogle Scholar
  6. 6.
    Antzelevitch C, Pollevick GD, Cordeiro JM, Casis O, Sanguinetti MC, Aizawa Y et al (2007) Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115:442–449PubMedCrossRefGoogle Scholar
  7. 7.
    Bakker ML, Boukens BJ, Mommersteeg MT, Brons JF, Wakker V, Moorman AF et al (2008) Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res 102:1340–1349PubMedCrossRefGoogle Scholar
  8. 8.
    Bezzina C, Veldkamp MW, van den Berg MP, Postma AV, Rook MB, Viersma JW et al (1999) A single Na(+) channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213PubMedCrossRefGoogle Scholar
  9. 9.
    Boukens BJ, Christoffels VM, Coronel R, Moorman AF (2009) Developmental basis for electrophysiological heterogeneity in the ventricular and outflow tract myocardium as a substrate for life-threatening ventricular arrhythmias. Circ Res 104:19–31PubMedCrossRefGoogle Scholar
  10. 10.
    Bruneau BG, Nemer G, Schmitt JP, Charron F, Robitaille L, Caron S et al (2001) A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell 106:709–721PubMedCrossRefGoogle Scholar
  11. 11.
    Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R et al (2010) Genetic variation in SCN10A influences cardiac conduction. Nat Genet 42:149–152PubMedCrossRefGoogle Scholar
  12. 12.
    Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P et al (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392:293–296PubMedCrossRefGoogle Scholar
  13. 13.
    Christoffels VM, Hoogaars WM, Tessari A, Clout DE, Moorman AF, Campione M (2004) T-box transcription factor Tbx2 represses differentiation and formation of the cardiac chambers. Dev Dyn 229:763–770PubMedCrossRefGoogle Scholar
  14. 14.
    Christoffels VM, Moorman AF (2009) Development of the cardiac conduction system: why are some regions of the heart more arrhythmogenic than others? Circ Arrhythm Electrophysiol 2:195–207PubMedCrossRefGoogle Scholar
  15. 15.
    Christoffels VM, Smits GJ, Kispert A, Moorman AF (2010) Development of the pacemaker tissues of the heart. Circ Res 106:240–254PubMedCrossRefGoogle Scholar
  16. 16.
    Costantini DL, Arruda EP, Agarwal P, Kim KH, Zhu Y, Zhu W et al (2005) The homeodomain transcription factor Irx5 establishes the mouse cardiac ventricular repolarization gradient. Cell 123:347–358PubMedCrossRefGoogle Scholar
  17. 17.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80:795–803PubMedCrossRefGoogle Scholar
  18. 18.
    de Jong F, Opthof T, Wilde AA, Janse MJ, Charles R, Lamers WH et al (1992) Persisting zones of slow impulse conduction in developing chicken hearts. Circ Res 71:240–250PubMedCrossRefGoogle Scholar
  19. 19.
    de la Cruz MV, Sanchez GC, Arteaga MM, Arguello C (1977) Experimental study of the development of the truncus and the conus in the chick embryo. J Anat 123:661–686PubMedGoogle Scholar
  20. 20.
    Deal BJ, Keane JF, Gillette PC, Garson A Jr (1985) Wolff–Parkinson–White syndrome and supraventricular tachycardia during infancy: management and follow-up. J Am Coll Cardiol 5:130–135PubMedCrossRefGoogle Scholar
  21. 21.
    Delpon E, Cordeiro JM, Nunez L, Thomsen PE, Guerchicoff A, Pollevick GD et al (2008) Functional effects of KCNE3 mutation and its role in the development of Brugada syndrome. Circ Arrhythm Electrophysiol 1:209–218PubMedCrossRefGoogle Scholar
  22. 22.
    Fischer A, Klattig J, Kneitz B, Diez H, Maier M, Holtmann B et al (2005) Hey basic helix-loop-helix transcription factors are repressors of GATA4 and GATA6 and restrict expression of the GATA target gene ANF in fetal hearts. Mol Cell Biol 25:8960–8970PubMedCrossRefGoogle Scholar
  23. 23.
    Frisch DR, Kwaku KF, Allocco DJ, Zimetbaum PJ (2006) Atrioventricular nodal reentrant tachycardia in two siblings with Wolfram syndrome. J Cardiovasc Electrophysiol 17:1029–1031PubMedCrossRefGoogle Scholar
  24. 24.
    Grego-Bessa J, Luna-Zurita L, del Monte G, Bolos V, Melgar P, Arandilla A et al (2007) Notch signaling is essential for ventricular chamber development. Dev Cell 12:415–429PubMedCrossRefGoogle Scholar
  25. 25.
    Gutierrez-Roelens I, De RL, Ovaert C, Sluysmans T, Devriendt K, Brunner HG et al (2006) A novel CSX/NKX2-5 mutation causes autosomal-dominant AV block: are atrial fibrillation and syncopes part of the phenotype? Eur J Hum Genet 14:1313–1316PubMedCrossRefGoogle Scholar
  26. 26.
    Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G et al (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666PubMedCrossRefGoogle Scholar
  27. 27.
    Hasdemir C, Aydin HH, Celik HA, Simsek E, Payzin S, Kayikcioglu M et al (2010) Transcriptional profiling of septal wall of the right ventricular outflow tract in patients with idiopathic ventricular arrhythmias. Pacing Clin Electrophysiol 33:159–167PubMedCrossRefGoogle Scholar
  28. 28.
    Hayes JJ, Sharma PP, Smith PN, Vidaillet HJ (2004) Familial atrioventricular nodal reentry tachycardia. Pacing Clin Electrophysiol 27:73–76PubMedCrossRefGoogle Scholar
  29. 29.
    Herron TJ, Milstein ML, Anumonwo J, Priori SG, Jalife J (2010) Purkinje cell calcium dysregulation is the cellular mechanism that underlies catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm 7:1122–1128PubMedCrossRefGoogle Scholar
  30. 30.
    Hoff EC, Kramer TC, DuBois D, Patten BM (1939) The development of the electrocardiogram of the embryonic heart. Am Heart J 17:470–488CrossRefGoogle Scholar
  31. 31.
    Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H et al (2010) Several common variants modulate heart rate, PR interval and QRS duration. Nat Genet 42:117–122PubMedCrossRefGoogle Scholar
  32. 32.
    Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY et al (2007) Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev 21:1098–1112PubMedCrossRefGoogle Scholar
  33. 33.
    Hoogendijk MG, Opthof T, Postema PG, Wilde AA, de Bakker JM, Coronel R (2010) The Brugada ECG pattern: A marker of channelopathy, structural heart disease, or neither? Toward a unifying mechanism of the Brugada syndrome. Circ Arrhythm Electrophysiol 3:283–290PubMedCrossRefGoogle Scholar
  34. 34.
    Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M et al (2004) Nk2–5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest 113:1130–1137PubMedGoogle Scholar
  35. 35.
    Jiang Y, Tarzami S, Burch JB, Evans T (1998) Common role for each of the cGATA-4/5/6 genes in the regulation of cardiac morphogenesis. Dev Genet 22:263–277PubMedCrossRefGoogle Scholar
  36. 36.
    Kléber AG, Janse MJ, Fast VG (2011) Normal and abnormal conduction in the heart. In: Comprehensive Physiology. pp 455–530Google Scholar
  37. 37.
    Kreuzberg MM, Schrickel JW, Ghanem A, Kim JS, Degen J, Janssen-Bienhold U et al (2006) Connexin30.2 containing gap junction channels decelerate impulse propagation through the atrioventricular node. Proc Natl Acad Sci USA 103:5959–5964PubMedCrossRefGoogle Scholar
  38. 38.
    Lalani SR, Thakuria JV, Cox GF, Wang X, Bi W, Bray MS et al (2009) 20p12.3 microdeletion predisposes to Wolff-Parkinson-White syndrome with variable neurocognitive deficits. J Med Genet 46:168–175PubMedCrossRefGoogle Scholar
  39. 39.
    Le GL, Pichon O, Isidor B, Boceno M, Rival JM, David A et al (2008) A 8.26 Mb deletion in 6q16 and a 4.95 Mb deletion in 20p12 including JAG1 and BMP2 in a patient with Alagille syndrome and Wolff-Parkinson-White syndrome. Eur J Med Genet 51:651–657CrossRefGoogle Scholar
  40. 40.
    Li J, Greener ID, Inada S, Nikolski VP, Yamamoto M, Hancox JC et al (2008) Computer three-dimensional reconstruction of the atrioventricular node. Circ Res 102:975–985PubMedCrossRefGoogle Scholar
  41. 41.
    Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L et al (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nk2–5. Genes Dev 9:1654–1666PubMedCrossRefGoogle Scholar
  42. 42.
    Ma L, Lu MF, Schwartz RJ, Martin JF (2005) Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning. Development 132:5601–5611PubMedCrossRefGoogle Scholar
  43. 43.
    McGuire MA, Janse MJ, Ross DL (1993) “AV nodal” reentry: part II: AV nodal, AV junctional, or atrionodal reentry? J Cardiovasc Electrophysiol 4:573–586PubMedCrossRefGoogle Scholar
  44. 44.
    Meysen S, Marger L, Hewett KW, Jarry-Guichard T, Agarkova I, Chauvin JP et al (2007) Nkx2.5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system. Dev Biol 303:740–753PubMedCrossRefGoogle Scholar
  45. 45.
    Miquerol L, Meysen S, Mangoni M, Bois P, van Rijen HV, Abran P et al (2004) Architectural and functional asymmetry of the His-Purkinje system of the murine heart. Cardiovasc Res 63:77–86PubMedCrossRefGoogle Scholar
  46. 46.
    Miquerol L, Moreno-Rascon N, Beyer S, Dupays L, Meilhac SM, Buckingham ME et al (2010) Biphasic development of the mammalian ventricular conduction system. Circ Res 107:153–161PubMedCrossRefGoogle Scholar
  47. 47.
    Mond HG, Proclemer A (2011) The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009-a world society of Arrhythmia’s project. Pacing Clin Electrophysiol 34:1013–1027PubMedCrossRefGoogle Scholar
  48. 48.
    Morita H, Fukushima-Kusano K, Nagase S, Takenaka-Morita S, Nishii N, Kakishita M et al (2003) Site-specific arrhythmogenesis in patients with Brugada syndrome. J Cardiovasc Electrophysiol 14:373–379PubMedCrossRefGoogle Scholar
  49. 49.
    Moskowitz IP, Kim JB, Moore ML, Wolf CM, Peterson MA, Shendure J et al (2007) A molecular pathway including Id2, Tbx5, and Nk2–5 required for cardiac conduction system development. Cell 129:1365–1376PubMedCrossRefGoogle Scholar
  50. 50.
    Moskowitz IP, Pizard A, Patel VV, Bruneau BG, Kim JB, Kupershmidt S et al (2004) The T-box transcription factor Tbx5 is required for the patterning and maturation of the murine cardiac conduction system. Development 131:4107–4116PubMedCrossRefGoogle Scholar
  51. 51.
    Munshi NV, McAnally J, Bezprozvannaya S, Berry JM, Richardson JA, Hill JA et al (2009) Cx30.2 enhancer analysis identifies Gata4 as a novel regulator of atrioventricular delay. Development 136:2665–2674PubMedCrossRefGoogle Scholar
  52. 52.
    Ou B, Nakagawa M, Kajimoto M, Nobe S, Ooie T, Ichinose M et al (2005) Heterogeneous expression of connexin 43 in the myocardium of rabbit right ventricular outflow tract. Life Sci 77:52–59PubMedCrossRefGoogle Scholar
  53. 53.
    Pennisi DJ, Mikawa T (2005) Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol 279:378–390PubMedCrossRefGoogle Scholar
  54. 54.
    Pfeufer A, van Noord NC, Marciante KD, Arking DE, Larson MG, Smith AV et al (2010) Genome-wide association study of PR interval. Nat Genet 42:153–159PubMedCrossRefGoogle Scholar
  55. 55.
    Priori SG, Pandit SV, Rivolta I, Berenfeld O, Ronchetti E, Dhamoon A et al (2005) A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 96:800–807PubMedCrossRefGoogle Scholar
  56. 56.
    Purkinje JE (1845) Mikroskopisch-neurologische Beobachtungen. Arch Anat Physiol Med II/III:281–295Google Scholar
  57. 57.
    Rana MS, Horsten NC, Tesink-Taekema S, Lamers WH, Moorman AF, van den Hoff MJ (2007) Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract. Circ Res 100:1000–1007PubMedCrossRefGoogle Scholar
  58. 58.
    Rentschler S, Harris BS, Kuznekoff L, Jain R, Manderfield L, Lu MM et al (2011) Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J Clin Invest 121:525–533PubMedCrossRefGoogle Scholar
  59. 59.
    Rentschler S, Zander J, Meyers K, France D, Levine R, Porter G et al (2002) Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc Natl Acad Sci USA 99:10464–10469PubMedCrossRefGoogle Scholar
  60. 60.
    Schram G, Pourrier M, Melnyk P, Nattel S (2002) Differential distribution of cardiac ion channel expression as a basis for regional specialization in electrical function. Circ Res 90:939–950PubMedCrossRefGoogle Scholar
  61. 61.
    Singh MK, Christoffels VM, Dias JM, Trowe MO, Petry M, Schuster-Gossler K et al (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707PubMedCrossRefGoogle Scholar
  62. 62.
    Smith TK, Bader DM (2007) Signals from both sides: control of cardiac development by the endocardium and epicardium. Semin Cell Dev Biol 18:84–89PubMedCrossRefGoogle Scholar
  63. 63.
    Sotoodehnia N, Isaacs A, de Bakker PI, Dorr M, Newton-Cheh C, Nolte IM et al (2010) Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. Nat Genet 42:1068–1076PubMedCrossRefGoogle Scholar
  64. 64.
    Stroud DM, Gaussin V, Burch JB, Yu C, Mishina Y, Schneider MD et al (2007) Abnormal conduction and morphology in the atrioventricular node of mice with atrioventricular canal targeted deletion of Alk3/Bmpr1a receptor. Circulation 116:2535–2543PubMedCrossRefGoogle Scholar
  65. 65.
    Viragh S, Challice CE (1977) The development of the conduction system in the mouse embryo heart. I. The first embryonic A-V conduction pathway. Dev Biol 56:382–396PubMedCrossRefGoogle Scholar
  66. 66.
    Viragh S, Challice CE (1977) The development of the conduction system in the mouse embryo heart. II. Histogenesis of the atrioventricular node and bundle. Dev Biol 56:397–411PubMedCrossRefGoogle Scholar
  67. 67.
    Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ et al (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23PubMedCrossRefGoogle Scholar
  68. 68.
    Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG et al (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 4:1603–1607PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang L, Benson DW, Tristani-Firouzi M, Ptacek LJ, Tawil R, Schwartz PJ et al (2005) Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 111:2720–2726PubMedCrossRefGoogle Scholar
  70. 70.
    Zhang SS, Kim KH, Rosen A, Smyth JW, Sakuma R, Delgado-Olguin P et al (2011) Iroquois homeobox gene 3 establishes fast conduction in the cardiac His-Purkinje network. Proc Natl Acad Sci USA 108:13576–13581PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bastiaan J. Boukens
    • 1
  • Vincent M. Christoffels
    • 2
  1. 1.Heart Failure Research Center, Department of Anatomy, Embryology and Physiology, Department of Clinical and Experimental CardiologyAmsterdamThe Netherlands
  2. 2.Heart Failure Research Center, Department of Anatomy, Embryology and PhysiologyAmsterdamThe Netherlands

Personalised recommendations