Advertisement

Pediatric Cardiology

, Volume 33, Issue 5, pp 757–763 | Cite as

Submicroscopic Chromosomal Copy Number Variations Identified in Children With Hypoplastic Left Heart Syndrome

  • Ashleigh R. Payne
  • Sheng-Wei Chang
  • Sara N. Koenig
  • Andrew R. Zinn
  • Vidu GargEmail author
Original Article

Abstract

Hypoplastic left heart syndrome (HLHS), one of the most severe types of congenital heart disease (CHD), results in significant morbidity and mortality despite surgical palliation. The etiology of HLHS is unknown, but evidence supports genetic contributors. The authors hypothesized that submicroscopic chromosomal abnormalities exist in individuals with HLHS and are more frequent in those with additional birth defects. This study sought to determine the incidence and genomic location of submicroscopic chromosomal abnormalities in HLHS and potentially to identify novel genetic loci that may contribute to the disease. For this study, 43 children with HLHS were recruited and screened together with a control population of 16 subjects using array comparative genomic hybridization, also called chromosomal microarray, for chromosomal copy number variations (CNVs). A statistically greater number of CNVs were found in the HLHS group than in the control group (p < 0.03). The CNVs were predominantly small autosomal deletions and duplications (≤60,000 bp). The frequency of unique CNVs, those not previously reported in public databases, did not differ statistically between the HLHS subjects and the control subjects. No difference in the frequency of CNVs was noted between the patients with HLHS and additional anomalies and those with isolated HLHS. The identified CNVs did not harbor potential candidate genes for HLHS, but one microdeletion was located on chromosome 14q23, a genetic locus linked to left-sided CHD. The study data demonstrate that CNVs, specifically those relatively small in size, are more common in subjects with HLHS, but the frequency of large potentially disease-causing CNVs (>480,000 bp) did not differ between the HLHS and control populations.

Keywords

Array comparative genome hybridization Congenital heart defects Developmental delay Genetics Hypoplastic left heart syndrome 

Notes

Acknowledgments

The authors thank the participating subjects and the Divisions of Cardiology and Cardiothoracic Surgery at Children’s Medical Center Dallas for assistance with clinical information, and Dr. K. L. McBride for critical review of the manuscript. This work was supported by a grant to Vidu Garg from the Children’s Heart Foundation.

Supplementary material

246_2012_208_MOESM1_ESM.docx (47 kb)
Supplementary material 1 (DOCX 46 kb)

References

  1. 1.
    Barron DJ, Kilby MD, Davies B, Wright JG, Jones TJ, Brawn WJ (2009) Hypoplastic left heart syndrome. Lancet 374:551–564PubMedCrossRefGoogle Scholar
  2. 2.
    Bonnet C, Andrieux J, Beri-Dexheimer M, Leheup B, Boute O, Manouvrier S, Delobel B, Copin H, Receveur A, Mathieu M, Thiriez G, Le Caignec C, David A, de Blois MC, Malan V, Philippe A, Cormier-Daire V, Colleaux L, Flori E, Dollfus H, Pelletier V, Thauvin-Robinet C, Masurel-Paulet A, Faivre L, Tardieu M, Bahi-Buisson N, Callier P, Mugneret F, Edery P, Jonveaux P, Sanlaville D (2010) Microdeletion at chromosome 4q21 defines a new emerging syndrome with marked growth restriction, mental retardation, and absent or severely delayed speech. J Med Genet 47:377–384PubMedCrossRefGoogle Scholar
  3. 3.
    Buizer-Voskamp JE, Muntjewerff JW, Strengman E, Sabatti C, Stefansson H, Vorstman JA, Ophoff RA (2011) Genome-wide analysis shows increased frequency of copy number variation deletions in Dutch schizophrenia patients. Biol Psychiatry 70:655–662PubMedCrossRefGoogle Scholar
  4. 4.
    Connor JA, Thiagarajan R (2007) Hypoplastic left heart syndrome. Orphanet J Rare Dis 2:23PubMedCrossRefGoogle Scholar
  5. 5.
    Edelmann L, Hirschhorn K (2009) Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann N Y Acad Sci 1151:157–166PubMedCrossRefGoogle Scholar
  6. 6.
    Erdogan F, Larsen LA, Zhang L, Tumer Z, Tommerup N, Chen W, Jacobsen JR, Schubert M, Jurkatis J, Tzschach A, Ropers HH, Ullmann R (2008) High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J Med Genet 45:704–709PubMedCrossRefGoogle Scholar
  7. 7.
    Garg V, Muth AN, Ransom JF, Schluterman MK, Barnes R, King IN, Grossfeld PD, Srivastava D (2005) Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274PubMedCrossRefGoogle Scholar
  8. 8.
    Girirajan S, Rosenfeld JA, Cooper GM, Antonacci F, Siswara P, Itsara A, Vives L, Walsh T, McCarthy SE, Baker C, Mefford HC, Kidd JM, Browning SR, Browning BL, Dickel DE, Levy DL, Ballif BC, Platky K, Farber DM, Gowans GC, Wetherbee JJ, Asamoah A, Weaver DD, Mark PR, Dickerson J, Garg BP, Ellingwood SA, Smith R, Banks VC, Smith W, McDonald MT, Hoo JJ, French BN, Hudson C, Johnson JP, Ozmore JR, Moeschler JB, Surti U, Escobar LF, El-Khechen D, Gorski JL, Kussmann J, Salbert B, Lacassie Y, Biser A, McDonald-McGinn DM, Zackai EH, Deardorff MA, Shaikh TH, Haan E, Friend KL, Fichera M, Romano C, Gecz J, DeLisi LE, Sebat J, King MC, Shaffer LG, Eichler EE (2010) A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay. Nat Genet 42:203–209PubMedCrossRefGoogle Scholar
  9. 9.
    Greenway SC, Pereira AC, Lin JC, DePalma SR, Israel SJ, Mesquita SM, Ergul E, Conta JH, Korn JM, McCarroll SA, Gorham JM, Gabriel S, Altshuler DM, Quintanilla-Dieck Mde L, Artunduaga MA, Eavey RD, Plenge RM, Shadick NA, Weinblatt ME, De Jager PL, Hafler DA, Breitbart RE, Seidman JG, Seidman CE (2009) De novo copy number variants identify new genes and loci in isolated sporadic tetralogy of Fallot. Nat Genet 41:931–935PubMedCrossRefGoogle Scholar
  10. 10.
    Grossfeld PD (1999) The genetics of hypoplastic left heart syndrome. Cardiol Young 9:627–632PubMedCrossRefGoogle Scholar
  11. 11.
    Hinton RB Jr, Martin LJ, Tabangin ME, Mazwi ML, Cripe LH, Benson DW (2007) Hypoplastic left heart syndrome is heritable. J Am Coll Cardiol 50:1590–1595PubMedCrossRefGoogle Scholar
  12. 12.
    Hinton RB, Martin LJ, Rame-Gowda S, Tabangin ME, Cripe LH, Benson DW (2009) Hypoplastic left heart syndrome links to chromosomes 10q and 6q and is genetically related to bicuspid aortic valve. J Am Coll Cardiol 53:1065–1071PubMedCrossRefGoogle Scholar
  13. 13.
    Hoffman JI, Kaplan S (2002) The incidence of congenital heart disease. J Am Coll Cardiol 39:1890–1900PubMedCrossRefGoogle Scholar
  14. 14.
    Iascone M, Ciccone R, Galletti L, Marchetti D, Seddio F, Lincesso A, Pezzoli L, Vetro A, Barachetti D, Boni L, Federici D, Soto A, Comas J, Ferrazzi P, Zuffardi O (2011) Identification of de novo mutations and rare variants in hypoplastic left heart syndrome. Clin Genet [epub ahead of print]Google Scholar
  15. 15.
    Lalani SR, Safiullah AM, Fernbach SD, Harutyunyan KG, Thaller C, Peterson LE, McPherson JD, Gibbs RA, White LD, Hefner M, Davenport SL, Graham JM, Bacino CA, Glass NL, Towbin JA, Craigen WJ, Neish SR, Lin AE, Belmont JW (2006) Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype-phenotype correlation. Am J Hum Genet 78:303–314PubMedCrossRefGoogle Scholar
  16. 16.
    Lambrechts D, Carmeliet P (2004) Genetics in zebrafish, mice, and humans to dissect congenital heart disease: insights in the role of VEGF. Curr Top Dev Biol 62:189–224PubMedCrossRefGoogle Scholar
  17. 17.
    Levy D, Ronemus M, Yamrom B, Lee YH, Leotta A, Kendall J, Marks S, Lakshmi B, Pai D, Ye K, Buja A, Krieger A, Yoon S, Troge J, Rodgers L, Iossifov I, Wigler M (2011) Rare de novo and transmitted copy number variation in autistic spectrum disorders. Neuron 70:886–897PubMedCrossRefGoogle Scholar
  18. 18.
    Lewin MB, McBride KL, Pignatelli R, Fernbach S, Combes A, Menesses A, Lam W, Bezold LI, Kaplan N, Towbin JA, Belmont JW (2004) Echocardiographic evaluation of asymptomatic parental and sibling cardiovascular anomalies associated with congenital left ventricular outflow tract lesions. Pediatrics 114:691–696PubMedCrossRefGoogle Scholar
  19. 19.
    McBride KL, Garg V (2011) Heredity of bicuspid aortic valve: is family screening indicated? Heart 97:1193–1195PubMedCrossRefGoogle Scholar
  20. 20.
    McBride KL, Pignatelli R, Lewin M, Ho T, Fernbach S, Menesses A, Lam W, Leal SM, Kaplan N, Schliekelman P, Towbin JA, Belmont JW (2005) Inheritance analysis of congenital left ventricular outflow tract obstruction malformations: segregation, multiplex relative risk, and heritability. Am J Med Genet A 134A:180–186PubMedCrossRefGoogle Scholar
  21. 21.
    McBride KL, Riley MF, Zender GA, Fitzgerald-Butt SM, Towbin JA, Belmont JW, Cole SE (2008) NOTCH1 mutations in individuals with left ventricular outflow tract malformations reduce ligand-induced signaling. Hum Mol Genet 17:2886–2893PubMedCrossRefGoogle Scholar
  22. 22.
    Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764PubMedCrossRefGoogle Scholar
  23. 23.
    Natowicz M, Chatten J, Clancy R, Conard K, Glauser T, Huff D, Lin A, Norwood W, Rorke LB, Uri A et al (1988) Genetic disorders and major extracardiac anomalies associated with the hypoplastic left heart syndrome. Pediatrics 82:698–706PubMedGoogle Scholar
  24. 24.
    Osoegawa K, Vessere GM, Utami KH, Mansilla MA, Johnson MK, Riley BM, L’Heureux J, Pfundt R, Staaf J, van der Vliet WA, Lidral AC, Schoenmakers EF, Borg A, Schutte BC, Lammer EJ, Murray JC, de Jong PJ (2008) Identification of novel candidate genes associated with cleft lip and palate using array comparative genomic hybridisation. J Med Genet 45:81–86PubMedCrossRefGoogle Scholar
  25. 25.
    Oyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PK, Melbye M (2009) Recurrence of congenital heart defects in families. Circulation 120:295–301PubMedCrossRefGoogle Scholar
  26. 26.
    Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, Gonzalez JR, Gratacos M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  27. 27.
    Richards AA, Garg V (2010) Genetics of congenital heart disease. Curr Cardiol Rev 6:91–99PubMedCrossRefGoogle Scholar
  28. 28.
    Richards AA, Santos LJ, Nichols HA, Crider BP, Elder FF, Hauser NS, Zinn AR, Garg V (2008) Cryptic chromosomal abnormalities identified in children with congenital heart disease. Pediatr Res 64:358–363PubMedCrossRefGoogle Scholar
  29. 29.
    Stankiewicz P, Beaudet AL (2007) Use of array CGH in the evaluation of dysmorphology, malformations, developmental delay, and idiopathic mental retardation. Curr Opin Genet Dev 17:182–192PubMedCrossRefGoogle Scholar
  30. 30.
    Stankunas K, Ma GK, Kuhnert FJ, Kuo CJ, Chang CP (2010) VEGF signaling has distinct spatiotemporal roles during heart valve development. Dev Biol 347:325–336PubMedCrossRefGoogle Scholar
  31. 31.
    Thienpont B, Mertens L, de Ravel T, Eyskens B, Boshoff D, Maas N, Fryns JP, Gewillig M, Vermeesch JR, Devriendt K (2007) Submicroscopic chromosomal imbalances detected by array-CGH are a frequent cause of congenital heart defects in selected patients. Eur Heart J 28:2778–2784PubMedCrossRefGoogle Scholar
  32. 32.
    Venkatraman ES, Olshen AB (2007) A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23:657–663PubMedCrossRefGoogle Scholar
  33. 33.
    Vermeesch JR, Balikova I, Schrander-Stumpel C, Fryns J, Devriendt K (2011) The causality of de novo copy number variants is overestimated. Eur J Hum Genet 19:1112–1113PubMedCrossRefGoogle Scholar
  34. 34.
    Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, van der Vliet WA, Huys EH, de Jong PJ, Hamel BC, Schoenmakers EF, Brunner HG, Veltman JA, van Kessel AG (2004) Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet 36:955–957PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ashleigh R. Payne
    • 1
  • Sheng-Wei Chang
    • 4
  • Sara N. Koenig
    • 4
  • Andrew R. Zinn
    • 2
    • 3
  • Vidu Garg
    • 4
    Email author
  1. 1.Department of PediatricsUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasUSA
  4. 4.Center for Cardiovascular and Pulmonary Research and The Heart Center, Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusUSA

Personalised recommendations