Pediatric Cardiology

, Volume 31, Issue 3, pp 325–334 | Cite as

Genetic and Genomic Dissection of Cardiogenesis in the Drosophila Model

  • Ingolf Reim
  • Manfred FraschEmail author
Riley Symposium


The linear heart tube of the fruit fly Drosophila has served as a very valuable model for studying the regulation of early heart development. In the past, regulatory genes of Drosophila cardiogenesis have been identified largely through candidate approaches. The vast genetic toolkit available in this organism has made it possible to determine their functions and build regulatory networks of transcription factors and signaling inputs that control heart development. In this review, we summarize the major findings from this study and present current approaches aiming to identify additional players in the specification, morphogenesis, and differentiation of the heart by forward genetic screens. We also discuss various genomic and bioinformatic approaches that are currently being developed to extend the known transcriptional networks more globally which, in combination with the genetic approaches, will provide a comprehensive picture of the regulatory circuits during cardiogenesis.


Drosophila Heart Development 


  1. 1.
    Akazawa H, Komuro I (2005) Cardiac transcription factor Csx/Nkx2–5: its role in cardiac development and diseases. Pharmacol Ther 107:252–268CrossRefPubMedGoogle Scholar
  2. 2.
    Albrecht S, Wang S, Holz A et al (2006) The ADAM metalloprotease Kuzbanian is crucial for proper heart formation in Drosophila melanogaster. Mech Dev 123:372–387CrossRefPubMedGoogle Scholar
  3. 3.
    Alvarez AD, Shi W, Wilson BA et al (2003) pannier and pointedP2 act sequentially to regulate Drosophila heart development. Development 130:3015–3026CrossRefPubMedGoogle Scholar
  4. 4.
    Azpiazu N, Frasch M (1993) tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev 7:1325–1340CrossRefPubMedGoogle Scholar
  5. 5.
    Black BL (2007) Transcriptional pathways in second heart field development. Semin Cell Dev Biol 18:67–76CrossRefPubMedGoogle Scholar
  6. 6.
    Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118:719–729PubMedGoogle Scholar
  7. 7.
    Cagavi Bozkulak E, Weinmaster G (2009) Selective Use of Adam10 and Adam17 in Activation of Notch1 Signaling. Mol Cell Biol 29:5679–5695CrossRefGoogle Scholar
  8. 8.
    Cai CL, Zhou W, Yang L et al (2005) T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–2487CrossRefPubMedGoogle Scholar
  9. 9.
    Cande JD, Chopra VS, Levine M (2009) Evolving enhancer-promoter interactions within the tinman complex of the flour beetle, Tribolium castaneum. Development 136:3153–3160CrossRefPubMedGoogle Scholar
  10. 10.
    Davidson B, Shi W, Levine M (2005) Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development 132:4811–4818CrossRefPubMedGoogle Scholar
  11. 11.
    Durocher D, Charron F, Warren R et al (1997) The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 16:5687–5696CrossRefPubMedGoogle Scholar
  12. 12.
    Estrada B, Choe SE, Gisselbrecht SS et al (2006) An integrated strategy for analyzing the unique developmental programs of different myoblast subtypes. PLoS Genet 2:e16CrossRefPubMedGoogle Scholar
  13. 13.
    Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374:464–467CrossRefPubMedGoogle Scholar
  14. 14.
    Gajewski K, Fossett N, Molkentin J et al (1999) The zinc finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 126:5679–5688PubMedGoogle Scholar
  15. 15.
    Gajewski K, Choi C, Kim Y et al (2000) Genetically distinct cardial cells within the Drosophila heart. Genesis 28:36–43CrossRefPubMedGoogle Scholar
  16. 16.
    Gajewski K, Zhang Q, Choi C et al (2001) Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 233:425–436CrossRefPubMedGoogle Scholar
  17. 17.
    Garg V, Kathiriya IS, Barnes R et al (2003) GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature 424:443–447CrossRefPubMedGoogle Scholar
  18. 18.
    Garg V (2006) Insights into the genetic basis of congenital heart disease. Cell Mol Life Sci 63:1141–1148CrossRefPubMedGoogle Scholar
  19. 19.
    Halfon MS, Grad Y, Church GM et al (2002) Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Genome Res 12:1019–1028PubMedGoogle Scholar
  20. 20.
    Han Z, Bodmer R (2003) Myogenic cells fates are antagonized by Notch only in asymmetric lineages of the Drosophila heart, with or without cell division. Development 130:3039–3051CrossRefPubMedGoogle Scholar
  21. 21.
    Han Z, Olson EN (2005) Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 132:3525–3536CrossRefPubMedGoogle Scholar
  22. 22.
    Han Z, Yi P, Li X et al (2006) Hand, an evolutionarily conserved bHLH transcription factor required for Drosophila cardiogenesis and hematopoiesis. Development 133:1175–1182CrossRefPubMedGoogle Scholar
  23. 23.
    Hartenstein AY, Rugendorff A, Tepass U et al (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220PubMedGoogle Scholar
  24. 24.
    Hazelett DJ, Lakeland DL, Weiss JB (2009) Affinity Density: a novel genomic approach to the identification of transcription factor regulatory targets. Bioinformatics 25:1617–1624CrossRefPubMedGoogle Scholar
  25. 25.
    Helenius IT, Beitel GJ (2008) The first “Slit” is the deepest: the secret to a hollow heart. J Cell Biol 182:221–223CrossRefPubMedGoogle Scholar
  26. 26.
    Hiroi Y, Kudoh S, Monzen K et al (2001) Tbx5 associates with Nkx2–5 and synergistically promotes cardiomyocyte differentiation. Nat Genet 28:276–280CrossRefPubMedGoogle Scholar
  27. 27.
    Hla T, Im DS (2009) Cell biology. The ABCs of lipophile transport. Science 323:883–884CrossRefPubMedGoogle Scholar
  28. 28.
    Horiuchi K, Zhou HM, Kelly K et al (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283:459–471CrossRefPubMedGoogle Scholar
  29. 29.
    Jagla T, Bidet Y, Da Ponte JP et al (2002) Cross-repressive interactions of identity genes are essential for proper specification of cardiac and muscular fates in Drosophila. Development 129:1037–1047PubMedGoogle Scholar
  30. 30.
    Junion G, Bataille L, Jagla T et al (2007) Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 21:3163–3180CrossRefPubMedGoogle Scholar
  31. 31.
    Kim YO, Park SJ, Balaban RS et al (2004) A functional genomic screen for cardiogenic genes using RNA interference in developing Drosophila embryos. Proc Natl Acad Sci USA 101:159–164CrossRefPubMedGoogle Scholar
  32. 32.
    Klaus A, Saga Y, Taketo MM et al (2007) Distinct roles of Wnt/beta-catenin and Bmp signaling during early cardiogenesis. Proc Natl Acad Sci USA 104:18531–18536CrossRefPubMedGoogle Scholar
  33. 33.
    Klinedinst SL, Bodmer R (2003) Gata factor Pannier is required to establish competence for heart progenitor formation. Development 130:3027–3038CrossRefPubMedGoogle Scholar
  34. 34.
    Kolsch V, Paululat A (2002) The highly conserved cardiogenic bHLH factor Hand is specifically expressed in circular visceral muscle progenitor cells and in all cell types of the dorsal vessel during Drosophila embryogenesis. Dev Genes Evol 212:473–485CrossRefPubMedGoogle Scholar
  35. 35.
    Liu YH, Jakobsen JS, Valentin G et al (2009) A systematic analysis of Tinman function reveals Eya and JAK-STAT signaling as essential regulators of muscle development. Dev Cell 16:280–291CrossRefPubMedGoogle Scholar
  36. 36.
    Lo PC, Frasch M (2001) A role for the COUP-TF-related gene seven-up in the diversification of cardioblast identities in the dorsal vessel of Drosophila. Mech Dev 104:49–60CrossRefPubMedGoogle Scholar
  37. 37.
    Lo PC, Frasch M (2003) Establishing A-P polarity in the embryonic heart tube: a conserved function of Hox genes in Drosophila and vertebrates? Trends Cardiovasc Med 13:182–187CrossRefPubMedGoogle Scholar
  38. 38.
    Lo PC, Zaffran S, Senatore S et al (2007) The Drosophila Hand gene is required for remodeling of the developing adult heart and midgut during metamorphosis. Dev Biol 311:287–296CrossRefPubMedGoogle Scholar
  39. 39.
    Lours C, Bardot O, Godt D et al (2003) The Drosophila melanogaster BTB proteins bric a brac bind DNA through a composite DNA binding domain containing a pipsqueak and an AT-Hook motif. Nucleic Acids Res 31:5389–5398CrossRefPubMedGoogle Scholar
  40. 40.
    Ma Q, Zhou B, Pu WT (2008) Reassessment of Isl1 and Nkx2–5 cardiac fate maps using a Gata4-based reporter of Cre activity. Dev Biol 323:98–104CrossRefPubMedGoogle Scholar
  41. 41.
    Mandal L, Banerjee U, Hartenstein V (2004) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023CrossRefPubMedGoogle Scholar
  42. 42.
    Mann T, Bodmer R, Pandur P (2009) The Drosophila homolog of vertebrate Islet1 is a key component in early cardiogenesis. Development 136:317–326CrossRefPubMedGoogle Scholar
  43. 43.
    Medioni C, Astier M, Zmojdzian M et al (2008) Genetic control of cell morphogenesis during Drosophila melanogaster cardiac tube formation. J Cell Biol 182:249–261CrossRefPubMedGoogle Scholar
  44. 44.
    Miskolczi-McCallum CM, Scavetta RJ, Svendsen PC et al (2005) The Drosophila melanogaster T-box genes midline and H15 are conserved regulators of heart development. Dev Biol 278:459–472CrossRefPubMedGoogle Scholar
  45. 45.
    Molina M, Cripps R (2001) Ostia, the inflow tracts of the Drosophila heart, develop from a genetically distinct subset of cardial cells. Mech Dev 109:51–59CrossRefPubMedGoogle Scholar
  46. 46.
    Monier B, Astier M, Semeriva M et al (2005) Steroid-dependent modification of Hox function drives myocyte reprogramming in the Drosophila heart. Development 132:5283–5293CrossRefPubMedGoogle Scholar
  47. 47.
    Monier B, Tevy MF, Perrin L et al (2007) Downstream of homeotic genes: in the heart of Hox function. Fly (Austin) 1:59–67Google Scholar
  48. 48.
    Olson EN (2006) Gene regulatory networks in the evolution and development of the heart. Science 313:1922–1927CrossRefPubMedGoogle Scholar
  49. 49.
    Pan D, Rubin GM (1997) Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90:271–280CrossRefPubMedGoogle Scholar
  50. 50.
    Park M, Wu X, Golden K et al (1996) The Wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177:104–116CrossRefPubMedGoogle Scholar
  51. 51.
    Philippakis AA, Busser BW, Gisselbrecht SS et al (2006) Expression-guided in silico evaluation of candidate cis regulatory codes for Drosophila muscle founder cells. PLoS Comput Biol 2:e53CrossRefPubMedGoogle Scholar
  52. 52.
    Qian L, Liu J, Bodmer R (2005) neuromancer Tbx20-related genes (H15/midline) promote cell fate specification and morphogenesis of the Drosophila heart. Dev Biol 279:509–524CrossRefPubMedGoogle Scholar
  53. 53.
    Reim I, Lee HH, Frasch M (2003) The T-box-encoding Dorsocross genes function in amnioserosa development and the patterning of the dorsolateral germ band downstream of Dpp. Development 130:3187–3204CrossRefPubMedGoogle Scholar
  54. 54.
    Reim I, Frasch M (2005) The Dorsocross T-box genes are key components of the regulatory network controlling early cardiogenesis in Drosophila. Development 132:4911–4925CrossRefPubMedGoogle Scholar
  55. 55.
    Reim I, Mohler J, Frasch M (2005) Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. Mech Dev 132:4911–4925Google Scholar
  56. 56.
    Renault AD, Lehmann R (2006) Follow the fatty brick road: lipid signaling in cell migration. Curr Opin Genet Dev 16:348–354CrossRefPubMedGoogle Scholar
  57. 57.
    Rizki TM (1978) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila. Academic Press, London and New York, pp 397–452Google Scholar
  58. 58.
    Rugendorff A, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280CrossRefGoogle Scholar
  59. 59.
    Sandmann T, Jensen LJ, Jakobsen JS et al (2006) A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell 10:797–807CrossRefPubMedGoogle Scholar
  60. 60.
    Sandmann T, Girardot C, Brehme M et al (2007) A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 21:436–449CrossRefPubMedGoogle Scholar
  61. 61.
    Segal E, Raveh-Sadka T, Schroeder M et al (2008) Predicting expression patterns from regulatory sequence in Drosophila segmentation. Nature 451:535–540CrossRefPubMedGoogle Scholar
  62. 62.
    Sellin J, Albrecht S, Kolsch V et al (2006) Dynamics of heart differentiation, visualized utilizing heart enhancer elements of the Drosophila melanogaster bHLH transcription factor Hand. Gene Expr Patterns 6:360–375CrossRefPubMedGoogle Scholar
  63. 63.
    Singh MK, Christoffels VM, Dias JM et al (2005) Tbx20 is essential for cardiac chamber differentiation and repression of Tbx2. Development 132:2697–2707CrossRefPubMedGoogle Scholar
  64. 64.
    Stathopoulos A, Tam B, Ronshaugen M et al (2004) pyramus and thisbe: FGF genes that pattern the mesoderm of Drosophila embryos. Genes Dev 18:687–699CrossRefPubMedGoogle Scholar
  65. 65.
    Stennard FA, Costa MW, Lai D et al (2005) Murine T-box transcription factor Tbx20 acts as a repressor during heart development, and is essential for adult heart integrity, function and adaptation. Development 132:2451–2462CrossRefPubMedGoogle Scholar
  66. 66.
    Stennard FA, Harvey RP (2005) T-box transcription factors and their roles in regulatory hierarchies in the developing heart. Development 132:4897–4910CrossRefPubMedGoogle Scholar
  67. 67.
    Su MT, Venkatesh TV, Wu X et al (1999) The pioneer gene, apontic, is required for morphogenesis and function of the Drosophila heart. Mech Dev 80:125–132CrossRefPubMedGoogle Scholar
  68. 68.
    Tao Y, Christiansen AE, Schulz RA (2007) Second chromosome genes required for heart development in Drosophila melanogaster. Genesis 45:607–617CrossRefPubMedGoogle Scholar
  69. 69.
    Tao Y, Wang J, Tokusumi T et al (2007) Requirement of the LIM homeodomain transcription factor Tailup for normal heart and hematopoietic organ formation in Drosophila melanogaster. Mol Cell Biol 27:3962–3969CrossRefPubMedGoogle Scholar
  70. 70.
    Tomancak P, Beaton A, Weiszmann R et al (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.0081–0088.0014Google Scholar
  71. 71.
    Wang J, Tao Y, Reim I et al (2005) Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila. Mol Cell Biol 25:4200–4210CrossRefPubMedGoogle Scholar
  72. 72.
    Ward E, Skeath J (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969PubMedGoogle Scholar
  73. 73.
    Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169:619–628CrossRefPubMedGoogle Scholar
  74. 74.
    Yi P, Han Z, Li X et al (2006) The mevalonate pathway controls heart formation in Drosophila by isoprenylation of Ggamma1. Science 313:1301–1303CrossRefPubMedGoogle Scholar
  75. 75.
    Yi P, Johnson AN, Han Z et al (2008) Heterotrimeric G proteins regulate a noncanonical function of septate junction proteins to maintain cardiac integrity in Drosophila. Dev Cell 15:704–713CrossRefPubMedGoogle Scholar
  76. 76.
    Yin Z, Frasch M (1998) Regulation and function of tinman during dorsal mesoderm induction and heart specification in Drosophila. Dev Genet 22:187–200CrossRefPubMedGoogle Scholar
  77. 77.
    Zaffran S, Reim I, Qian L et al (2006) Cardioblast-intrinsic Tinman activity controls proper diversification and differentiation of myocardial cells in Drosophila. Development 133:4073–4083CrossRefPubMedGoogle Scholar
  78. 78.
    Zeitouni B, Senatore S, Severac D et al (2007) Signalling pathways involved in adult heart formation revealed by gene expression profiling in Drosophila. PLoS Genet 3:1907–1921CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Division of Developmental Biology, Department of BiologyFriedrich-Alexander University of Erlangen-NurembergErlangenGermany

Personalised recommendations