Pediatric Cardiology

, Volume 31, Issue 3, pp 371–377 | Cite as

Transcriptional Control of Left–Right Patterning in Cardiac Development

  • Chiann-mun Chen
  • Dominic Norris
  • Shoumo Bhattacharya
Riley Symposium


The heart develops from a simple left–right (L–R) symmetrical tube. Through a complex process of looping and remodelling, it becomes a highly L–R asymmetrical organ with distinct asymmetries in both morphology and function. Abnormal cardiac L–R patterning can result in a spectrum of defects that include, dextrocardia (a malposition of the heart to the right), isomerism of the atria (both atria being morphologically right-sided or left-sided), abnormal ventricular topology (e.g. the morphological left ventricle being dextral to the morphological right ventricle) or mirror-image topology (associated with situs inversus). Intermediate forms include abnormalities such as situs ambiguus and heterotaxia. L–R patterning abnormalities are typically associated with cardiac malformations, and it has become clear that an isolated septal, outflow tract and aortic arch malformation may be the only presenting manifestation of an L–R patterning defect. In the last two decades, there have been seminal advances in our understanding of the mechanisms controlling L–R patterning, and how mutations in L–R patterning genes result in human cardiac malformation. In this review, we provide an overview of the transcriptional mechanisms that result in asymmetric gene activation in mammals, how they receive information from signalling pathways, and how this translates to abnormal cardiac development.


Left–right patterning Transcription Heart development 


  1. 1.
    Ang SL, Rossant J (1994) HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574CrossRefPubMedGoogle Scholar
  2. 2.
    Ang SL, Jin O, Rhinn M, Daigle N, Stevenson L, Rossant J (1996) A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122:243–252PubMedGoogle Scholar
  3. 3.
    Bamforth SD, Braganca J, Eloranta JJ, Murdoch JN, Marques FI, Kranc KR, Farza H, Henderson DJ, Hurst HC, Bhattacharya S (2001) Cardiac malformations, adrenal agenesis, neural crest defects and exencephaly in mice lacking Cited2, a new Tfap2 co-activator. Nat Genet 29:469–474CrossRefPubMedGoogle Scholar
  4. 4.
    Bamforth SD, Braganca J, Farthing CR, Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris D, Brown NA, Anderson RH, Bhattacharya S (2004) Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet 36:1189–1196CrossRefPubMedGoogle Scholar
  5. 5.
    Bartoloni L, Blouin JL, Pan Y, Gehrig C, Maiti AK, Scamuffa N, Rossier C, Jorissen M, Armengot M, Meeks M, Mitchison HM, Chung EM, Delozier-Blanchet CD, Craigen WJ, Antonarakis SE (2002) Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc Natl Acad Sci USA 99:10282–10286CrossRefPubMedGoogle Scholar
  6. 6.
    Beckers A, Alten L, Viebahn C, Andre P, Gossler A (2007) The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci USA 104:15765–15770CrossRefPubMedGoogle Scholar
  7. 7.
    Biddle FG, Jung JD, Eales BA (1991) Genetically determined variation in the azygos vein in the mouse. Teratology 44:675–683CrossRefPubMedGoogle Scholar
  8. 8.
    Blum M, Andre P, Muders K, Schweickert A, Fischer A, Bitzer E, Bogusch S, Beyer T, van Straaten HW, Viebahn C (2007) Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 75:133–146CrossRefPubMedGoogle Scholar
  9. 9.
    Brennan J, Norris DP, Robertson EJ (2002) Nodal activity in the node governs left-right asymmetry. Genes Dev 16:2339–2344CrossRefPubMedGoogle Scholar
  10. 10.
    Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM (2000) Smad5 is essential for left-right asymmetry in mice. Dev Biol 219:71–78CrossRefPubMedGoogle Scholar
  11. 11.
    Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135:789–798CrossRefPubMedGoogle Scholar
  12. 12.
    Corbit KC, Aanstad P, Singla V, Norman AR, Stainier DY, Reiter JF (2005) Vertebrate Smoothened functions at the primary cilium. Nature 437:1018–1021CrossRefPubMedGoogle Scholar
  13. 13.
    Franco D, Campione M (2003) The Role of Pitx2 during cardiac development. Linking left-right signaling and congenital heart diseases. Trends Cardiovasc Med 13:157–163CrossRefPubMedGoogle Scholar
  14. 14.
    Gaio U, Schweickert A, Fischer A, Garratt AN, Muller T, Ozcelik C, Lankes W, Strehle M, Britsch S, Blum M, Birchmeier C (1999) A role of the cryptic gene in the correct establishment of the left-right axis. Curr Biol 9:1339–1342CrossRefPubMedGoogle Scholar
  15. 15.
    Hadjantonakis AK, Pisano E, Papaioannou VE (2008) Tbx6 regulates left/right patterning in mouse embryos through effects on Nodal cilia and periNodal signaling. PLoS ONE 3:e2511CrossRefPubMedGoogle Scholar
  16. 16.
    Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left-right asymmetry. Nat Rev Genet 3:103–113CrossRefPubMedGoogle Scholar
  17. 17.
    Harvey RP (2002) Patterning the vertebrate heart. Nat Rev Genet 3:544–556CrossRefPubMedGoogle Scholar
  18. 18.
    High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61CrossRefPubMedGoogle Scholar
  19. 19.
    Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125:33–45CrossRefPubMedGoogle Scholar
  20. 20.
    Hiruma T, Nakajima Y, Nakamura H (2002) Development of pharyngeal arch arteries in early mouse embryo. J Anat 201:15–29CrossRefPubMedGoogle Scholar
  21. 21.
    Hong SK, Dawid IB (2009) FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci USA 106:2230–2235CrossRefPubMedGoogle Scholar
  22. 22.
    Hoodless PA, Pye M, Chazaud C, Labbe E, Attisano L, Rossant J, Wrana JL (2001) FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev 15:1257–1271CrossRefPubMedGoogle Scholar
  23. 23.
    Kishigami S, Yoshikawa S, Castranio T, Okazaki K, Furuta Y, Mishina Y (2004) BMP signaling through ACVRI is required for left-right patterning in the early mouse embryo. Dev Biol 276:185–193CrossRefPubMedGoogle Scholar
  24. 24.
    Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O’Brien TP, Hamada H, Gridley T (2003) Notch signaling regulates left-right asymmetry determination by inducing Nodal expression. Genes Dev 17:1207–1212CrossRefPubMedGoogle Scholar
  25. 25.
    Lee JD, Anderson KV (2008) Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left-right asymmetry in the mouse. Dev Dyn 237:3464–3476CrossRefPubMedGoogle Scholar
  26. 26.
    Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 82:803–814CrossRefPubMedGoogle Scholar
  27. 27.
    Liu C, Liu W, Palie J, Lu MF, Brown NA, Martin JF (2002) Pitx2c patterns anterior myocardium and aortic arch vessels and is required for local cell movement into atrioventricular cushions. Development 129:5081–5091CrossRefPubMedGoogle Scholar
  28. 28.
    Macdonald ST, Bamforth SD, Chen CM, Farthing CR, Franklyn A, Broadbent C, Schneider JE, Saga Y, Lewandoski M, Bhattacharya S (2008) Epiblastic Cited2 deficiency results in cardiac phenotypic heterogeneity and provides a mechanism for haploinsufficiency. Cardiovasc ResGoogle Scholar
  29. 29.
    McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114:61–73CrossRefPubMedGoogle Scholar
  30. 30.
    Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left-right determination as a regulator of lefty-2 and Nodal. Cell 94:287–297CrossRefPubMedGoogle Scholar
  31. 31.
    Meno C, Takeuchi J, Sakuma R, Koshiba-Takeuchi K, Ohishi S, Saijoh Y, Miyazaki J, ten Dijke P, Ogura T, Hamada H (2001) Diffusion of Nodal signaling activity in the absence of the feedback inhibitor Lefty2. Dev Cell 1:127–138CrossRefPubMedGoogle Scholar
  32. 32.
    Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285:403–406CrossRefPubMedGoogle Scholar
  33. 33.
    Mine N, Anderson RM, Klingensmith J (2008) BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left-right axis establishment. Development 135:2425–2434CrossRefPubMedGoogle Scholar
  34. 34.
    Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP (2005) Wnt3alinks left-right determination with segmentation and anteroposterior axis elongation. Development 132:5425–5436CrossRefPubMedGoogle Scholar
  35. 35.
    Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458:651–654CrossRefPubMedGoogle Scholar
  36. 36.
    Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left-right patterning of the mouse embryo by artificial Nodal flow. Nature 418:96–99CrossRefPubMedGoogle Scholar
  37. 37.
    Norris DP, Brennan J, Bikoff EK, Robertson EJ (2002) The FoxH1-dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo. Development 129:3455–3468PubMedGoogle Scholar
  38. 38.
    Nowotschin S, Liao J, Gage PJ, Epstein JA, Campione M, Morrow BE (2006) Tbx1 affects asymmetric cardiac morphogenesis by regulating Pitx2 in the secondary heart field. Development 133:1565–1573CrossRefPubMedGoogle Scholar
  39. 39.
    Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal Nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4:459–468CrossRefPubMedGoogle Scholar
  40. 40.
    Oki S, Hashimoto R, Okui Y, Shen MM, Mekada E, Otani H, Saijoh Y, Hamada H (2007) Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo. Development 134:3893–3904CrossRefPubMedGoogle Scholar
  41. 41.
    Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, Reinhardt R, Hennig S, Lehrach H, Konietzko N, Zariwala M, Noone PG, Knowles M, Mitchison HM, Meeks M, Chung EM, Hildebrandt F, Sudbrak R, Omran H (2002) Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 30:143–144CrossRefPubMedGoogle Scholar
  42. 42.
    Przemeck GK, Heinzmann U, Beckers J, Hrabe de Angelis M (2003) Node and midline defects are associated with left-right development in Delta1 mutant embryos. Development 130:3–13CrossRefPubMedGoogle Scholar
  43. 43.
    Ramsdell AF (2005) Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol 288:1–20CrossRefPubMedGoogle Scholar
  44. 44.
    Rana AA, Barbera JP, Rodriguez TA, Lynch D, Hirst E, Smith JC, Beddington RS (2004) Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development 131:4999–5007CrossRefPubMedGoogle Scholar
  45. 45.
    Rashbass P, Wilson V, Rosen B, Beddington RS (1994) Alterations in gene expression during mesoderm formation and axial patterning in Brachyury (T) embryos. Int J Dev Biol 38:35–44PubMedGoogle Scholar
  46. 46.
    Raya A, Kawakami Y, Rodriguez-Esteban C, Buscher D, Koth CM, Itoh T, Morita M, Raya RM, Dubova I, Bessa JG, de la Pompa JL, Belmonte JC (2003) Notch activity induces Nodal expression and mediates the establishment of left-right asymmetry in vertebrate embryos. Genes Dev 17:1213–1218CrossRefPubMedGoogle Scholar
  47. 47.
    Raya A, Kawakami Y, Rodriguez-Esteban C, Ibanes M, Rasskin-Gutman D, Rodriguez-Leon J, Buscher D, Feijo JA, Izpisua Belmonte JC (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left-right determination. Nature 427:121–128CrossRefPubMedGoogle Scholar
  48. 48.
    Rochais F, Mesbah K, Kelly RG (2009) Signaling pathways controlling second heart field development. Circ Res 104:933–942CrossRefPubMedGoogle Scholar
  49. 49.
    Roessler E, Ouspenskaia MV, Karkera JD, Velez JI, Kantipong A, Lacbawan F, Bowers P, Belmont JW, Towbin JA, Goldmuntz E, Feldman B, Muenke M (2008) Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly. Am J Hum Genet 83:18–29CrossRefPubMedGoogle Scholar
  50. 50.
    Roy S (2009) The motile cilium in development and disease: emerging new insights. Bioessays 31:694–699CrossRefPubMedGoogle Scholar
  51. 51.
    Saijoh Y, Adachi H, Sakuma R, Yeo CY, Yashiro K, Watanabe M, Hashiguchi H, Mochida K, Ohishi S, Kawabata M, Miyazono K, Whitman M, Hamada H (2000) Left-right asymmetric expression of Lefty2 and Nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol Cell 5:35–47CrossRefPubMedGoogle Scholar
  52. 52.
    Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol 19:589–621CrossRefPubMedGoogle Scholar
  53. 53.
    Schwabe GC, Hoffmann K, Loges NT, Birker D, Rossier C, de Santi MM, Olbrich H, Fliegauf M, Failly M, Liebers U, Collura M, Gaedicke G, Mundlos S, Wahn U, Blouin JL, Niggemann B, Omran H, Antonarakis SE, Bartoloni L (2007) Primary ciliary dyskinesia associated with normal axoneme ultrastructure is caused by DNAH11 Mutations. Hum MutatGoogle Scholar
  54. 54.
    Shawlot W, Behringer RR (1995) Requirement for Lim1 in head-organizer function. Nature 374:425–430CrossRefPubMedGoogle Scholar
  55. 55.
    Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphology. Development 133:2095–2104CrossRefPubMedGoogle Scholar
  56. 56.
    Shiratori H, Sakuma R, Watanabe M, Hashiguchi H, Mochida K, Sakai Y, Nishino J, Saijoh Y, Whitman M, Hamada H (2001) Two-step regulation of left-right asymmetric expression of Pitx2: initiation by Nodal signaling and maintenance by Nkx2. Mol Cell 7:137–149CrossRefPubMedGoogle Scholar
  57. 57.
    Slough J, Cooney L, Brueckner M (2008) Monocilia in the embryonic mouse heart suggest a direct role for cilia in cardiac morphogenesis. Dev Dyn 237:2304–2314CrossRefPubMedGoogle Scholar
  58. 58.
    Supp DM, Witte DP, Potter SS, Brueckner M (1997) Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 389:963–966CrossRefPubMedGoogle Scholar
  59. 59.
    Tabin CJ, Vogan KJ (2003) A two-cilia model for vertebrate left-right axis specification. Genes Dev 17:1–6CrossRefPubMedGoogle Scholar
  60. 60.
    Takeuchi JK, Lickert H, Bisgrove BW, Sun X, Yamamoto M, Chawengsaksophak K, Hamada H, Yost HJ, Rossant J, Bruneau BG (2007) Baf60c is a nuclear Notch signaling component required for the establishment of left-right asymmetry. Proc Natl Acad Sci USA 104:846–851CrossRefPubMedGoogle Scholar
  61. 61.
    Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward Nodal flow is critical for left-right determination. Nature 435:172–177CrossRefPubMedGoogle Scholar
  62. 62.
    Tanaka C, Sakuma R, Nakamura T, Hamada H, Saijoh Y (2007) Long-range action of Nodal requires interaction with GDF1. Genes Dev 21:3272–3282CrossRefPubMedGoogle Scholar
  63. 63.
    Tessari A, Pietrobon M, Notte A, Cifelli G, Gage PJ, Schneider MD, Lembo G, Campione M (2008) Myocardial Pitx2 differentially regulates the left atrial identity and ventricular asymmetric remodeling programs. Circ Res 102:813–822CrossRefPubMedGoogle Scholar
  64. 64.
    Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallon J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC (1999) Multiple left-right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci USA 96:11376–11381CrossRefPubMedGoogle Scholar
  65. 65.
    van Wijk B, Moorman AF, van den Hoff MJ (2007) Role of bone morphogenetic proteins in cardiac differentiation. Cardiovasc Res 74:244–255CrossRefPubMedGoogle Scholar
  66. 66.
    Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472CrossRefPubMedGoogle Scholar
  67. 67.
    Ware SM, Peng J, Zhu L, Fernbach S, Colicos S, Casey B, Towbin J, Belmont JW (2004) Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects. Am J Hum Genet 74:93–105CrossRefPubMedGoogle Scholar
  68. 68.
    Weninger WJ, Mohun T (2002) Phenotyping transgenic embryos: a rapid 3-D screening method based on episcopic fluorescence image capturing. Nat Genet 30:59–65CrossRefPubMedGoogle Scholar
  69. 69.
    Weninger WJ, Floro KL, Bennett MB, Withington SL, Preis JI, Barbera JP, Mohun TJ, Dunwoodie SL (2005) Cited2 is required both for heart morphogenesis and establishment of the left-right axis in mouse development. Development 132:1337–1348CrossRefPubMedGoogle Scholar
  70. 70.
    Yamamoto M, Meno C, Sakai Y, Shiratori H, Mochida K, Ikawa Y, Saijoh Y, Hamada H (2001) The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev 15:1242–1256CrossRefPubMedGoogle Scholar
  71. 71.
    Yamamoto M, Mine N, Mochida K, Sakai Y, Saijoh Y, Meno C, Hamada H (2003) Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate. Development 130:1795–1804CrossRefPubMedGoogle Scholar
  72. 72.
    Yamanaka Y, Tamplin OJ, Beckers A, Gossler A, Rossant J (2007) Live imaging and genetic analysis of mouse notochord formation reveals regional morphogenetic mechanisms. Dev Cell 13:884–896CrossRefPubMedGoogle Scholar
  73. 73.
    Yan YT, Gritsman K, Ding J, Burdine RD, Corrales JD, Price SM, Talbot WS, Schier AF, Shen MM (1999) Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes Dev 13:2527–2537CrossRefPubMedGoogle Scholar
  74. 74.
    Yashiro K, Shiratori H, Hamada H (2007) Haemodynamics determined by a genetic programme govern asymmetric development of the aortic arch. Nature 450:285–288CrossRefPubMedGoogle Scholar
  75. 75.
    Yin Z, Haynie J, Yang X, Han B, Kiatchoosakun S, Restivo J, Yuan S, Prabhakar NR, Herrup K, Conlon RA, Hoit BD, Watanabe M, Yang YC (2002) The essential role of Cited2, a negative regulator for HIF-1{alpha}, in heart development and neurulation. Proc Natl Acad Sci USA 99:10488–10493CrossRefPubMedGoogle Scholar
  76. 76.
    Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R symmetry by the mouse node. Cell 106:781–792CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chiann-mun Chen
    • 1
  • Dominic Norris
    • 2
  • Shoumo Bhattacharya
    • 1
  1. 1.Department of Cardiovascular Medicine & Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
  2. 2.MRC Mammalian Genetics UnitHarwellUK

Personalised recommendations