Pediatric Cardiology

, Volume 31, Issue 2, pp 181–187 | Cite as

Does Biventricular Pacing Improve Hemodynamics in Children Undergoing Routine Congenital Heart Surgery?

  • Aamir Jeewa
  • Alexander F. Pitfield
  • James E. Potts
  • Wendy Soulikias
  • Eustace S. DeSouza
  • A. J. Hollinger
  • George G. S. Sandor
  • Jacques G. LeBlanc
  • Andrew M. Campbell
  • Shubhayan Sanatani
Original Article


Biventricular (BiV) pacing or cardiac resynchronization therapy (CRT) is an established therapy for heart failure in adults. In children, cardiac dyssynchrony occurs most commonly following repair of congenital heart disease (CHD) where multisite pacing has been shown to improve both hemodynamics and ventricular function. Determining which patient types would specifically benefit has not yet been established. A prospective, repeated measures design was undertaken to evaluate BiV pacing in a cohort of children undergoing biventricular repair for correction of their CHD. Hemodynamics, arterial blood gas, electrocardiographic (ECG), and echocardiographic data were collected. Pacing protocol was undertaken prior to the patient’s extubation with 20 min of conventional right ventricular (RV) or BiV pacing, preceded and followed by 10 min of recovery time. Multivariate statistics were used to analyze the data with p values <0.05 considered significant. Twenty-five (14 female) patients underwent surgery at a median (range) age of 5.2 (0.1–37.4) months with no early mortality. The Risk-adjusted classification for Congenital Heart Surgery (RACHS) scores were 2 in 14 patients, 3 in eight patients, and 4 in three patients. None had pre-existing arrhythmias, dyssynchrony, or required pacing pre-operatively. No patient required implantation of a permanent pacemaker post-operatively. The median cardio-pulmonary bypass time was 96 (55–236) min. RV and BiV pacing did not improve cardiac index from baseline (3.23 vs. 3.42 vs. 3.39 L/min/m2; p > 0.05). The QRS duration was not changed with pacing (100 vs. 80 vs. 80 ms; p > 0.05). On echocardiography, the time-to-peak velocity difference between the septal and posterior walls (synchrony) during pacing was similar to baseline and was also not statistically significant. BiV pacing did not improve cardiac output when compared to intrinsic sinus rhythm or RV pacing in this cohort of patients. Our study has shown that BiV pacing is not indicated in children who have undergone routine BiV congenital heart surgery. Further prospective studies are needed to assess the role of multisite pacing in children with ventricular dyssynchrony such as those with single ventricles, those undergoing reoperation or those with high RACHS scores.


Biventricular pacing Congenital heart disease Tissue Doppler echocardiography 



The authors would like to acknowledge the assistance of Mrs. Mary T. Potts and Mrs. Karen Gibbs for their roles in the completion of this study.


  1. 1.
    Abraham WT, Hayes DL (2003) Cardiac resynchronization therapy for heart failure. Circulation 108(21):2596–2603CrossRefPubMedGoogle Scholar
  2. 2.
    Adelstein EC, Saba S (2007) Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J 153(1):105–112CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson RH, Ho SY (1991) The morphologic substrates for pediatric arrhythmias. Cardiol Young (1):159–176Google Scholar
  4. 4.
    Auricchio A, Klein H, Tockman B, Sack S, Stellbrink C, Neuzner J, Kramer A, Ding J, Pochet T, Maarse A, Spinelli J (1999) Transvenous biventricular pacing for heart failure: Can the obstacles be overcome? Am J Cardiol 83(5B):136D–142DCrossRefPubMedGoogle Scholar
  5. 5.
    Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JW, Garrigue S, Gorcsan J 3rd, Hayes DL, Kass DA, Knuuti J, Leclercq C, Linde C, Mark DB, Monaghan MJ, Nihoyannopoulos P, Schalij MJ, Stellbrink C, Yu CM (2005) Cardiac resynchronization therapy: Part 1—Issues before device implantation. J Am Coll Cardiol 46(12):2153–2167CrossRefPubMedGoogle Scholar
  6. 6.
    Birnie DH, Tang AS (2006) The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol 21(1):20–26CrossRefPubMedGoogle Scholar
  7. 7.
    Breithardt OA, Stellbrink C, Franke A, Auricchio A, Huvelle E, Sack S, Bakker P, Hanrath P (2000) Echocardiographic evidence of hemodynamic and clinical improvement in patients paced for heart failure. Am J Cardiol 86(9; Suppl 1):K133–K137CrossRefGoogle Scholar
  8. 8.
    Breithardt OA, Stellbrink C, Kramer AP, Sinha AM, Franke A, Salo R, Schiffgens B, Huvelle E, Auricchio A (2002) Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40(3):536–545CrossRefPubMedGoogle Scholar
  9. 9.
    Burrows FA, Steele RW, Marmer DJ, Van Devanter SH, Westerman GR (1987) Influence of operations with cardiopulmonary bypass on polymorphonuclear leukocyte function in infants. J Thorac Cardiovasc Surg 93(2):253–260PubMedGoogle Scholar
  10. 10.
    Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C, Garrigue S, Kappenberger L, Haywood GA, Santini M, Bailleul C, Daubert JC (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344(12):873–880CrossRefPubMedGoogle Scholar
  11. 11.
    Cheung MM, Smallhorn JF, Vogel M, Van Arsdell G, Redington AN (2006) Disruption of the ventricular myocardial force-frequency relationship after cardiac surgery in children: noninvasive assessment by means of tissue Doppler imaging. J Thorac Cardiovasc Surg 131(3):625–631CrossRefPubMedGoogle Scholar
  12. 12.
    Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J 3rd, St John Sutton M, De Sutter J, Murillo J (2008) Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117(20):2608–2616CrossRefPubMedGoogle Scholar
  13. 13.
    Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549CrossRefPubMedGoogle Scholar
  14. 14.
    Del Nido P, Goldman BS (1989) Temporary epicardial pacing after open heart surgery: complications and prevention. J Card Surg 4(1):99–103CrossRefPubMedGoogle Scholar
  15. 15.
    Dubin AM (2005) Resynchronization in pediatrics. Who needs it? J Am Coll Cardiol 46(12):2290–2291CrossRefPubMedGoogle Scholar
  16. 16.
    Dubin AM, Janousek J, Rhee E, Strieper MJ, Cecchin F, Law IH, Shannon KM, Temple J, Rosenthal E, Zimmerman FJ, Davis A, Karpawich PP, Al Ahmad A, Vetter VL, Kertesz NJ, Shah M, Snyder C, Stephenson E, Emmel M, Sanatani S, Kanter R, Batra A, Collins KK (2005) Resynchronization therapy in pediatric and congenital heart disease patients. J Am Coll Cardiol 46(12):2277–2283CrossRefPubMedGoogle Scholar
  17. 17.
    Gottipaty VK KS, Lu F (1999) The resting electrocardiogram provides a sensitive and inexpensive marker of prognosis in patients with chronic congestive heart failure. J Am Coll Cardiol 33(2):145A [abstract]Google Scholar
  18. 18.
    Hochleitner M, Hortnagl H, Ng CK, Gschnitzer F, Zechmann W (1990) Usefulness of physiologic dual-chamber pacing in drug-resistant idiopathic dilated cardiomyopathy. Am J Cardiol 66(2):198–202CrossRefPubMedGoogle Scholar
  19. 19.
    Janousek J, Gebauer RA (2008) Cardiac resynchronization therapy in pediatric and congenital heart disease. Pacing Clin Electrophysiol 31(Suppl 1):S21–S23PubMedGoogle Scholar
  20. 20.
    Janousek J, Vojtovic P, Hucin B, Tlaskal T, Gebauer RA, Gebauer R, Matejka T, Marek J, Reich O (2001) Resynchronization pacing is a useful adjunct to the management of acute heart failure after surgery for congenital heart defects. Am J Cardiol 88(2):145–152CrossRefPubMedGoogle Scholar
  21. 21.
    Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123(1):110–118CrossRefPubMedGoogle Scholar
  22. 22.
    Konstantino Y, Iakobishvili Z, Arad O, Ben-Gal T, Kusniec J, Mazur A, Porter A, Strasberg B, Battler A, Hasdai D (2006) Urgent cardiac resynchronization therapy in patients with decompensated chronic heart failure receiving inotropic therapy. A case series. Cardiology 106(1):59–62CrossRefPubMedGoogle Scholar
  23. 23.
    Malouf PJ, Madani M, Gurudevan S, Waltman TJ, Raisinghani AB, DeMaria AN, Blanchard DG (2006) Assessment of diastolic function with Doppler tissue imaging after cardiac surgery: effect of the “postoperative septum” in on-pump and off-pump procedures. J Am Soc Echocardiogr 19(4):464–467CrossRefPubMedGoogle Scholar
  24. 24.
    McAlister FA, Ezekowitz JA, Wiebe N, Rowe B, Spooner C, Crumley E, Hartling L, Klassen T, Abraham W (2004) Systematic review: cardiac resynchronization in patients with symptomatic heart failure. Ann Intern Med 141(5):381–390PubMedGoogle Scholar
  25. 25.
    Milliez P, Thomas O, Haggui A, Schurando P, Squara P, Cohen-Solal A, Mebazaa A, Leenhardt A (2008) Cardiac resynchronisation as a rescue therapy in patients with catecholamine-dependent overt heart failure: results from a short and mid-term study. Eur J Heart Fail 10(3):291–297CrossRefPubMedGoogle Scholar
  26. 26.
    Ng K, Kedia N, Martin D, Tchou P, Natale A, Wilkoff B, Starling R, Grimm RA (2007) The benefits of biventricular pacing in heart failure patients with narrow QRS, NYHA class II and right ventricular pacing. Pacing Clin Electrophysiol 30(2):193–198CrossRefPubMedGoogle Scholar
  27. 27.
    Nishimura RA, Hayes DL, Holmes DR Jr, Tajik AJ (1995) Mechanism of hemodynamic improvement by dual-chamber pacing for severe left ventricular dysfunction: an acute Doppler and catheterization hemodynamic study. J Am Coll Cardiol 25(2):281–288CrossRefPubMedGoogle Scholar
  28. 28.
    Pham PP, Balaji S, Shen I, Ungerleider R, Li X, Sahn DJ (2005) Impact of conventional versus biventricular pacing on hemodynamics and tissue Doppler imaging indexes of resynchronization postoperatively in children with congenital heart disease. J Am Coll Cardiol 46(12):2284–2289CrossRefPubMedGoogle Scholar
  29. 29.
    Spotnitz HM (2005) Optimizing temporary perioperative cardiac pacing. J Thorac Cardiovasc Surg 129(1):5–8CrossRefPubMedGoogle Scholar
  30. 30.
    Vanagt WY, Verbeek XA, Delhaas T, Mertens L, Daenen WJ, Prinzen FW (2004) The left ventricular apex is the optimal site for pediatric pacing: correlation with animal experience. Pacing Clin Electrophysiol 27(6; Pt 2):837–843CrossRefPubMedGoogle Scholar
  31. 31.
    Zimmerman FJ, Starr JP, Koenig PR, Smith P, Hijazi ZM, Bacha EA (2003) Acute hemodynamic benefit of multisite ventricular pacing after congenital heart surgery. Ann Thorac Surg 75(6):1775–1780CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aamir Jeewa
    • 1
  • Alexander F. Pitfield
    • 2
  • James E. Potts
    • 1
  • Wendy Soulikias
    • 2
  • Eustace S. DeSouza
    • 1
  • A. J. Hollinger
    • 1
  • George G. S. Sandor
    • 1
  • Jacques G. LeBlanc
    • 3
  • Andrew M. Campbell
    • 3
  • Shubhayan Sanatani
    • 1
    • 4
  1. 1.Division of Cardiology, Department of PediatricsBritish Columbia Children’s Hospital, The University of British ColumbiaVancouverCanada
  2. 2.Division of Critical Care, Department of PediatricsBritish Columbia Children’s Hospital, University of British ColumbiaVancouverCanada
  3. 3.Division of Cardiovascular and Thoracic Surgery, Department of SurgeryBritish Columbia Children’s Hospital, University of British ColumbiaVancouverCanada
  4. 4.Division of CardiologyBritish Columbia’s Children’s HospitalVancouverCanada

Personalised recommendations