Pediatric Cardiology

, Volume 30, Issue 4, pp 502–509 | Cite as

Contribution of Long-QT Syndrome Genetic Variants in Sudden Infant Death Syndrome

  • Gilles Millat
  • Béatrice Kugener
  • Philippe Chevalier
  • Mohamed Chahine
  • Hai Huang
  • Daniel Malicier
  • Claire Rodriguez-Lafrasse
  • Robert Rousson
Original Article


A cohort of 52 French unrelated infant cases who died unexpectedly before they reached 12 months of age was blindly investigated to better quantify the contribution of long-QT syndrome (LQTS) genetic variants in French cases of sudden infant death syndrome (SIDS). After a standardized autopsy protocol, a blinded molecular screening of the KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 genes was performed on each case. These postmortem investigations enabled us to reclassify 18 as non-SIDS cases, 32 as SIDS cases, and 2 as suspected SIDS cases. Among the 18 non-SIDS cases, no LQTS mutation was identified. In contrast, our results led to a possible explanation for the death of at least three infants in the SIDS cohort. Half of the LQTS gene variants identified were located on the SCN5A gene. This study confirms that LQTS mutations may represent one of the leading genetic causes of SIDS. If autopsy fails to provide an explanation for an unexplained infant death, medicolegal investigation should be extended with a molecular screening of major LQTS genes. Identification of more LQTS mutations in SIDS cases could provide new insights into the pathophysiology of SIDS and, consequently, reduce the number of unexplained sudden infant deaths.


Mutations Long-QT syndrome Sudden infant death syndrome Polymorphisms Arrythmia 



This work was supported by PHRC 97061 and by the French Ministery of Research (Diagnosis Network on Neuromuscular Diseases). The authors thank Ms. C. Bulle, V. Chanavat, E. Froidefond, R. Perraudin, and O. Vial for expert technical assistance.


  1. 1.
    Ackerman MJ, Benjamin L, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin JA (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286:2264–2269PubMedCrossRefGoogle Scholar
  2. 2.
    Ackerman MJ, Splawski I, Makielski JC, Tester DJ, Will ML, Timothy KW, Keating MT, Jones G, Chadha M, Burrow CR, Stephens JC, Xu C, Judson R, Curran ME (2004) Spectrum and prevalence of cardiac sodium channel variants among black, white, Asian, and Hispanic individuals: implications for arrhythmogenic susceptibility and Brugada/long QT syndrome genetic testing. Heart Rhythm 1:600–607PubMedCrossRefGoogle Scholar
  3. 3.
    Anson BD, Ackerman MJ, Tester DJ, Will ML, Delisle BP, Anderson CL, January CT (2004) Molecular and functional characterization of common polymorphisms in HERG (KCNH2) potassium channels. Am J Physiol Heart Circ Physiol 286:2434–2444CrossRefGoogle Scholar
  4. 4.
    Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL, Schwartz PJ (2007) Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 115:361–367PubMedCrossRefGoogle Scholar
  5. 5.
    Berecki G, Zegers JG, Bhuiyan ZA, Verkerk AO, Wilders R, van Ginneken AC (2006) Long-QT syndrome related sodium channel mutations probed by dynamic action potential clamp technique. J Physiol 570:237–250PubMedGoogle Scholar
  6. 6.
    Bezzina CR, Verkerk AO, Busjahn A, Jeron A, Erdmann J, Koopmann TT, Bhuiyan ZA, Wilders R, Mannens MM, Tan HL, Luft FC, Schunkert H, Wilde AA (2003) A common polymorphism in KCNH2 (HERG) hastens cardiac repolarization. Cardiovasc Res 59:27–36PubMedCrossRefGoogle Scholar
  7. 7.
    Christiansen M, Tønder N, Larsen LA, Andersen PS, Simonsen H, Øyen N, Kanters JK, Jacobsen JR, Fosdal I, Wettrell G, Kjeldsen K (2005) Mutations in the HERG K-ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am J Cardiol 95:433–434PubMedCrossRefGoogle Scholar
  8. 8.
    Cronk LB, Ye B, Kaku T, Tester DJ, Vatta M, Makielski JC, Ackerman MJ (2007) Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 4:161–166PubMedCrossRefGoogle Scholar
  9. 9.
    Crotti L, Lundquist AL, Insolia R, Pedrazzini M, Ferrandi C, De Ferrari GM, Vicentini A, Yang P, Roden DM, George AL Jr, Schwartz PJ (2005) KCNH2–K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112:1251–1258PubMedCrossRefGoogle Scholar
  10. 10.
    Friedlander Y, Vatta M, Sotoodehnia N, Sinnreich R, Li H, Manor O, Towbin JA, Siscovick DS, Kark JD (2005) Possible association of the human KCNE1 (minK) gene and QT interval in healthy subjects: evidence from association and linkage analyses in Israeli families. Ann Hum Genet 69:645–656PubMedCrossRefGoogle Scholar
  11. 11.
    Goldenberg I, Moss AJ, Zareba W (2005) Sudden cardiac death without structural heart disease: update on the long QT and Brugada syndromes. Curr Cardiol Rep 7:349–356PubMedCrossRefGoogle Scholar
  12. 12.
    Gouas L, Nicaud V, Berthet M, Forhan A, Tiret L, Balkau B, Guicheney P (2005) Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet 13:1213–1222PubMedCrossRefGoogle Scholar
  13. 13.
    Laitinen P, Fodstad H, Piippo K, Swan H, Toivonen L, Viitasalo M, Kaprio J, Kontula K (2000) Survey of the coding region of the HERG gene in long QT syndrome reveals six novelmutations and an amino acid polymorphism with possible phenotypic effects. Hum Mutat 15:580–581PubMedCrossRefGoogle Scholar
  14. 14.
    Lupoglazoff JM, Denjoy I, Villain E, Fressart V, Simon F, Bozio A, Berthet M, Benammar N, Hainque B, Guicheney P (2004) Long QT syndrome in neonates: conduction disorders associated with HERG mutations and sinus bradycardia with KCNQ1 mutations. J Am Coll Cardiol 43:826–830PubMedCrossRefGoogle Scholar
  15. 15.
    Maron BJ, Clark CE, Goldstein RE, Epstein SE (1976) Potential role of QT interval prolongation in sudden infant death syndrome. Circulation 54:423–430PubMedGoogle Scholar
  16. 16.
    Millat G, Chevalier P, Restier-Miron L, Da Costa A, Bouvagnet P, Kugener B, Fayol L, Gonzalez Armengod C, Oddou B, Chanavat V, Froidefond E, Perraudin R, Rousson R, Rodriguez-Lafrasse C (2006) Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin Genet 70:214–227PubMedCrossRefGoogle Scholar
  17. 17.
    Paavonen KJ, Chapman H, Laitinen PJ, Fodstad H, Piippo K, Swan H, Toivonen L, Viitasalo M, Kontula K, Pasternack M (2003) Functional characterization of the common amino acid 897 polymorphism of the cardiac potassium channel KCNH2 (HERG). Cardiovasc Res 59:603–611PubMedCrossRefGoogle Scholar
  18. 18.
    Pfeufer A, Jalilzadeh S, Perz S, Mueller JC, Hinterseer M, Illig T, Akyol M, Huth C, Schopfer-Wendels A, Kuch B, Steinbeck G, Holle R, Nabauer M, Wichmann HE, Meitinger T, Kaab S (2005) Common variants in myocardial ion channel genes modify the QT interval in the general population: results from the KORA study. Circ Res 96:693–701PubMedCrossRefGoogle Scholar
  19. 19.
    Piippo K, Swan H, Pasternack M, Chapman H, Paavonen K, Viitasalo M, Toivonen L, Kontula K (2001) A founder mutation of the potassium channel KCNQ1 in long QT syndrome: implications for estimation of disease prevalence and molecular diagnostics. J Am Coll Cardiol 37:562–568PubMedCrossRefGoogle Scholar
  20. 20.
    Plant LD, Bowers PN, Liu Q, Morgan T, Zhang T, State MW, Chen W, Kittles RA, Goldstein SA (2006) A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest 116:430–435PubMedCrossRefGoogle Scholar
  21. 21.
    Schwartz PJ (1976) Cardiac sympathetic innervation and the sudden infant death syndrome. A possible pathogenetic link. Am J Med 60:167–172PubMedCrossRefGoogle Scholar
  22. 22.
    Schwartz PJ, Stramba-Badiale M, Segantini A, Austoni P, Bosi G, Giorgetti R, Grancini F, Marni ED, Perticone F, Rosti D, Salice P (1998) Prolongation of the QT interval and the sudden infant death syndrome. N Engl J Med 338:1709–1714PubMedCrossRefGoogle Scholar
  23. 23.
    Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Rosaria Berti M, Bloise R (2000) A molecular link between the sudden infant death syndrome and the long QT syndrome. N Engl J Med 343:262–267PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz PJ, Priori SG, Bloise R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Rosaria Berti M, Bloise R (2001) Molecular diagnosis in a child with sudden infant death syndrome. Lancet 358:1342–1343PubMedCrossRefGoogle Scholar
  25. 25.
    Tan BH, Valdivia CR, Rok BA, Ye B, Ruwaldt KM, Tester DJ, Ackerman MJ, Makielski JC (2005) Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2:741–747PubMedCrossRefGoogle Scholar
  26. 26.
    Taylor EM, Emery JL (1990) Categories of preventable unexpected infant deaths. Arch Dis Child 65:535–559PubMedCrossRefGoogle Scholar
  27. 27.
    Tester DJ, Ackerman MJ (2005) Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc Res 67:388–396PubMedCrossRefGoogle Scholar
  28. 28.
    Tester DJ, Will ML, Haglund CM, Ackerman MJ (2005) Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2:507–517PubMedCrossRefGoogle Scholar
  29. 29.
    Tester DJ, Dura M, Carturan E, Reiken S, Wronska A, Marks AR, Ackerman MJ (2007) A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 4:733–739PubMedCrossRefGoogle Scholar
  30. 30.
    Van Langen IM, Birnie E, Alders M, Jongbloed RJ, Le Marec H, Wilde AA (2003) The use of genotype-phenotype correlations in mutation analysis for the long QT syndrome. J Med Genet 40:141–145PubMedCrossRefGoogle Scholar
  31. 31.
    Van Norstrand DW, Valdivia CR, Tester DJ, Ueda K, London B, Makielski JC, Ackerman MJ (2007) Molecular and functional characterization of novel glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation 116:2253−2259PubMedCrossRefGoogle Scholar
  32. 32.
    Viswanathan PC, Benson DW, Balser JR (2003) A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 111:315–316Google Scholar
  33. 33.
    Wang DW, Desai RR, Crotti L, Arnestad M, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Rognum T, Schwartz PJ, George AL (2007) Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 115:368–376PubMedCrossRefGoogle Scholar
  34. 34.
    Wedekind H, Smits JP, Schulze-Bahr E, Arnold R, Veldkamp MW, Bajanowski T, Borggrefe M, Brinkmann B, Warnecke I, Funke H, Bhuiyan ZA, Wilde AA, Breithardt G, Haverkamp W (2001) De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation 104:1158–1164PubMedCrossRefGoogle Scholar
  35. 35.
    Wedekind H, Bajanowski T, Friederich P, Breithardt G, Wulfing T, Siebrands C, Engeland B, Monnig G, Haverkamp W, Brinkmann B, Schulze-Bahr E (2005) Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int J Legal Med 120:129–137PubMedCrossRefGoogle Scholar
  36. 36.
    Weese-Mayer DE, Ackerman MJ, Marazita ML, Berry-Kravis EM (2007) Sudden Infant Death Syndrome: review of implicated genetic factors. Am J Med Genet A 143:771–788Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gilles Millat
    • 1
    • 2
    • 3
  • Béatrice Kugener
    • 4
  • Philippe Chevalier
    • 5
  • Mohamed Chahine
    • 6
  • Hai Huang
    • 6
  • Daniel Malicier
    • 7
  • Claire Rodriguez-Lafrasse
    • 1
    • 2
    • 3
  • Robert Rousson
    • 1
    • 2
    • 3
  1. 1.Laboratoire de Cardiogénétique MoléculaireCentre de Biologie et Pathologie Est, Hospices Civils de Lyon, LyonBron CedexFrance
  2. 2.Université de LyonLyonFrance
  3. 3.Université Lyon 1LyonFrance
  4. 4.Urgences PédiatriquesHôpital Femme-Mère-EnfantBronFrance
  5. 5.Unité de Cardiologie et Soins IntensifsHôpital CardioVasculaire et PneumologiqueBronFrance
  6. 6.Centre de recherche Université Laval Robert-GiffardQuébecCanada
  7. 7.Institut Médico-légal, Domaine RockefellerLyonFrance

Personalised recommendations