Advertisement

Pediatric Cardiology

, Volume 30, Issue 5, pp 626–634 | Cite as

Analysis of Ventricular Hypertrabeculation and Noncompaction Using Genetically Engineered Mouse Models

  • Hanying Chen
  • Wenjun Zhang
  • Deqiang Li
  • Tim M. Cordes
  • R. Mark Payne
  • Weinian ShouEmail author
Riley Symposium

Abstract

Ventricular trabeculation and compaction are two of the many essential steps for generating a functionally competent ventricular wall. A significant reduction in trabeculation is usually associated with ventricular compact zone deficiencies (hypoplastic wall), which commonly lead to embryonic heart failure and early embryonic lethality. In contrast, hypertrabeculation and lack of ventricular wall compaction (noncompaction) are closely related defects in cardiac embryogenesis associated with left ventricular noncompaction, a genetically heterogeneous disorder. Here we summarize our recent findings through the analyses of several genetically engineered mouse models that have defects in cardiac trabeculation and compaction. Our data indicate that cellular growth and differentiation signaling pathways are keys in these ventricular morphogenetic events.

Keywords

Ventricular development Trabeculation and compaction Signaling 

Notes

Acknowledgment

This study was supported in part by National Institutes of Health Grants HL81092 (W.S.), HL70259 (W.S.), and HL85098 (W.S., M.P.).

References

  1. 1.
    Anderson RH, Webb S et al (2003) Development of the heart: (2) Septation of the atriums and ventricles. Heart 89(8):949–958PubMedCrossRefGoogle Scholar
  2. 2.
    Anderson RH, Webb S et al (2003) Development of the heart: (3) Formation of the ventricular outflow tracts, arterial valves, and intrapericardial arterial trunks. Heart 89(9):1110–1118PubMedCrossRefGoogle Scholar
  3. 3.
    Bartman T, Hove J (2005) Mechanics and function in heart morphogenesis. Dev Dynam 233(2):373–381CrossRefGoogle Scholar
  4. 4.
    Besson A, Dowdy SF et al (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169PubMedCrossRefGoogle Scholar
  5. 5.
    Bierer BE, Mattila PS et al (1990) Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. Proc Natl Acad Sci USA 87(23):9231–9235PubMedCrossRefGoogle Scholar
  6. 6.
    Brutsaer DL, Andries LJ (1992) The endocardial endothelium. Am J Physiol 263(4; Pt 2):H985–H1002Google Scholar
  7. 7.
    Cameron AM, Nucifora FC Jr et al (1997) FKBP12 binds the inositol 1,4,5-trisphosphate receptor at leucine-proline (1400–1401) and anchors calcineurin to this FK506-like domain. J Biol Chem 272(44):27582–27588PubMedCrossRefGoogle Scholar
  8. 8.
    Cameron AM, Steiner JP et al (1995) Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83(3):463–472PubMedCrossRefGoogle Scholar
  9. 9.
    Chen H, Shi S et al (2004) BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131(9):2219–2231PubMedCrossRefGoogle Scholar
  10. 10.
    Chen Q, Chen H et al (2009) Smad7 is required for the development and function of heart. J Biol Chem 284(1):292–300PubMedCrossRefGoogle Scholar
  11. 11.
    Clendenon JL, Phillips CL et al (2002) Voxx: a PC-based, near real-time volume rendering system for biological microscopy. Am J Physiol Cell Physiol 282(1):C213–C218PubMedGoogle Scholar
  12. 12.
    Cook AC, Yates RW et al (2004) Normal and abnormal fetal cardiac anatomy. Prenat Diagn 24(13):1032–1048PubMedCrossRefGoogle Scholar
  13. 13.
    Gourdie RG, Kubalak S et al (1999) Conducting the embryonic heart: orchestrating development of specialized cardiac tissues. Trends Cardiovasc Med 9(1–2):18–26PubMedCrossRefGoogle Scholar
  14. 14.
    Hagopian M, Spiro D (1970) Derivation of the Z line in the embryonic chick heart. J Cell Biol 44(3):683–687PubMedCrossRefGoogle Scholar
  15. 15.
    Heldin CH, Miyazono K et al (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390(6659):465–471PubMedCrossRefGoogle Scholar
  16. 16.
    Icardo JM (1988) Heart anatomy and developmental biology. Experientia 44(11–12):910–919PubMedCrossRefGoogle Scholar
  17. 17.
    Icardo JM, Fernandez-Teran A (1987) Morphologic study of ventricular trabeculation in the embryonic chick heart. Acta Anat (Basel) 130(3):264–274CrossRefGoogle Scholar
  18. 18.
    Jayaraman T, Brillantes AM et al (1992) FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267(14):9474–9477PubMedGoogle Scholar
  19. 19.
    King T, Bland Y et al (2002) Expression of Peg1 (Mest) in the developing mouse heart: involvement in trabeculation. Dev Dynam 225(2):212–215CrossRefGoogle Scholar
  20. 20.
    Klaassen S, Probst S et al (2008) Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117(22):2893–2901PubMedCrossRefGoogle Scholar
  21. 21.
    Kochilas LK, Li J et al (1999) p57Kip2 expression is enhanced during mid-cardiac murine development and is restricted to trabecular myocardium. Pediatr Res 45(5; Pt 1):635–642PubMedCrossRefGoogle Scholar
  22. 22.
    Lee Y, Song AJ et al (2000) Jumonji, a nuclear protein that is necessary for normal heart development. Circ Res 86(9):932–938PubMedGoogle Scholar
  23. 23.
    Meilhac SM, Kelly RG et al (2003) A retrospective clonal analysis of the myocardium reveals two phases of clonal growth in the developing mouse heart. Development 130(16):3877–3889PubMedCrossRefGoogle Scholar
  24. 24.
    Mikawa T, Borisov A et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: I. Formation of the ventricular myocardium. Dev Dynam 193(1):11–23Google Scholar
  25. 25.
    Mikawa T, Cohen-Gould L et al (1992) Clonal analysis of cardiac morphogenesis in the chicken embryo using a replication-defective retrovirus: III. Polyclonal origin of adjacent ventricular myocytes. Dev Dynam 195(2):133–141Google Scholar
  26. 26.
    Mikawa T, Gourdie RG et al (2002) Induction and patterning of the Purkinje fibre network. Novartis Found Symp 250:142–153; discussion 153–156CrossRefGoogle Scholar
  27. 27.
    Moorman A, Webb S et al (2003) Development of the heart: (1) Formation of the cardiac chambers and arterial trunks. Heart 89(7):806–814PubMedCrossRefGoogle Scholar
  28. 28.
    Moorman AF, Christoffels VM et al (2007) The heart-forming fields: one or multiple? Philos Trans R Soc Lond Ser B Biol Sci 362(1484):1257–1265CrossRefGoogle Scholar
  29. 29.
    Neuhaus H, Rosen V et al (1999) Heart specific expression of mouse BMP-10, a novel member of the TGF-beta superfamily. Mech Dev 80(2):181–184PubMedCrossRefGoogle Scholar
  30. 30.
    Pashmforoush M, Lu JT et al (2004) Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117(3):373–386PubMedCrossRefGoogle Scholar
  31. 31.
    Pasumarthi KB, Field LJ (2002) Cardiomyocyte cell cycle regulation. Circ Res 90(10):1044–1054PubMedCrossRefGoogle Scholar
  32. 32.
    Pignatelli RH, McMahon CJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108(21):2672–2678PubMedCrossRefGoogle Scholar
  33. 33.
    Risebro CA, Riley PR (2006) Formation of the ventricles. Sci World J 6:1862–1880Google Scholar
  34. 34.
    Ronna KC (1977) Myogenesis and contraction in the early embryonic heart of the rainbow trout. An electron microscopic study. Cell Tissue Res 180(1):123–132PubMedGoogle Scholar
  35. 35.
    Rumyantsev PP, Krylova MI (1990) Ultrastructure of myofibers and cells synthesizing DNA in the developing and regenerating lymph-heart muscles. Int Rev Cytol 120:1–52PubMedCrossRefGoogle Scholar
  36. 36.
    Sandhu R, Finkelhor RS et al (2008) Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography 25(1):8–12PubMedGoogle Scholar
  37. 37.
    Schreiber SL, Crabtree GR (1995) Immunophilins, ligands, and the control of signal transduction. Harvey Lect 91:99–114PubMedGoogle Scholar
  38. 38.
    Sedmera D, Pexieder T et al (2000) Developmental patterning of the myocardium. Anat Rec 258(4):319–337PubMedCrossRefGoogle Scholar
  39. 39.
    Shi W, Chen H et al (2003) TACE is required for fetal murine cardiac development and modeling. Dev Biol 261(2):371–380PubMedCrossRefGoogle Scholar
  40. 40.
    Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700PubMedCrossRefGoogle Scholar
  41. 41.
    Shou W, Aghdasi B et al (1998) Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391(6666):489–492PubMedCrossRefGoogle Scholar
  42. 42.
    Taber LA (1998) Mechanical aspects of cardiac development. Prog Biophys Mol Biol 69(2–3):237–255PubMedCrossRefGoogle Scholar
  43. 43.
    Timerman AP, Ogunbumni E et al (1993) The calcium release channel of sarcoplasmic reticulum is modulated by FK-506-binding protein. Dissociation and reconstitution of FKBP-12 to the calcium release channel of skeletal muscle sarcoplasmic reticulum. J Biol Chem 268(31):22992–22999PubMedGoogle Scholar
  44. 44.
    Wang T, Li BY et al (1996) The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell 86(3):435–444PubMedCrossRefGoogle Scholar
  45. 45.
    Weiford BC, Subbarao VD et al (2004) Noncompaction of the ventricular myocardium. Circulation 109(24):2965–2971PubMedCrossRefGoogle Scholar
  46. 46.
    Xing Y, Ichida F et al (2006) Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol Genet Metab 88(1):71–77PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hanying Chen
    • 1
  • Wenjun Zhang
    • 1
  • Deqiang Li
    • 1
  • Tim M. Cordes
    • 1
  • R. Mark Payne
    • 1
  • Weinian Shou
    • 1
    Email author
  1. 1.Riley Heart Research Center, Herman B. Wells Center for Pediatric Research, Department of PediatricsIndiana University School of MedicineIndianapolisUSA

Personalised recommendations