Pediatric Cardiology

, Volume 30, Issue 3, pp 306–310 | Cite as

The Longitudinal Course of Cardiomyopathy in Friedreich’s Ataxia During Childhood

  • Alaina Kipps
  • Mark Alexander
  • Steven D. Colan
  • Kimberlee Gauvreau
  • Leslie Smoot
  • Lisa Crawford
  • Basil T. Darras
  • Elizabeth D. Blume
Original Article


Background Clinical heart disease was recognized in the first descriptions of Friedreich’s ataxia (FA). Cardiac manifestations reported for this progressive neurologic disease include hypertrophic cardiomyopathy, dilated cardiomyopathy, and electrophysiologic disturbances. Longitudinal data for childhood cases are limited. This study aimed to define the longitudinal course of the cardiac abnormalities with FA diagnosed during childhood and to correlate the presence of cardiomyopathy with clinical and genetic factors. Methods A retrospective chart review was conducted, with prospective, blinded interpretation of echocardiograms and electrocardiograms. All the patients with a diagnosis of FA referred to the cardiology department of a single institution from 1974 to 2004 were included in the study. Results This study investigated a total of 113 echocardiograms for 28 patients. Overall, the group had left ventricular hypertrophy and normal systolic function, with a median mass z-score of 2.48 (range, −3.8 to 35.6) and a median ejection fraction (EF) of 61% (range, 23–81%). Of the 28 patients, 23 (82%) had two or more echocardiograms. The median follow-up time to the most recent echocardiogram was 5.1 years (range, 0.4–16.5 years). Many in this longitudinal follow-up cohort (57%) showed hypertrophic cardiomyopathy on at least one echocardiogram, with the last follow-up assessment showing systolic dysfunction for 38% of these patients. There was a slow nonlinear decline in systolic function over time, with the mean EF decreasing more rapidly as age increased (p = 0.02) and maintenance of EF in the normal range until the age of 22 years. Of the 12 patients with systolic dysfunction and follow-up echocardiograms, 10 showed improvement to the normal EF range on at least one echocardiogram, and 5 remained normal through the last study. None of the trends in cardiac function and morphology correlated with frataxin GAA repeat length (the primary genetic defect in FA) or ambulatory status. One patient required an implantable defibrillator. There were no deaths or heart transplantations. Conclusions Overall, patients with FA have preserved cardiac function with increased mass throughout childhood. Because many patients who experience depressed systolic function show improvement in subsequent studies, evaluation for potentially reversible causes of heart failure should be conducted. Relative clinical stability during childhood and maintenance of normal systolic function into the second decade may be helpful for parent and patient education.


Friedreich’s ataxia Cardiomyopathy (secondary) Heart disease Child Adolescent 



Friedreich’s ataxia


Left ventricle


Ejection fraction


Fractional shortening


End-diastolic dimension


End-diastolic volume


Hypertrophic cardiomyopathy




  1. 1.
    Alper G, Narayanan V (2003) Friedreich’s ataxia. Pediatr Neurol 28:335–341PubMedCrossRefGoogle Scholar
  2. 2.
    Bit-Avragim N, Perot A, Schols L et al (2001) The GAA repeat expansion in intron 1 of the frataxin gene is related to the severity of cardiac manifestation in patients with Friedreich’s ataxia. J Mol Med 78:626–632PubMedCrossRefGoogle Scholar
  3. 3.
    Campuzano V, Montermini L, Molto M et al (1996) Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427PubMedCrossRefGoogle Scholar
  4. 4.
    Casazza F, Morpurgo M (1996) The varying evolution of Friedreich’s ataxia cardiomyopathy. Am J Cardiol 77:895–898PubMedCrossRefGoogle Scholar
  5. 5.
    Child J, Perloff JK, Bach PM et al (1986) Cardiac involvement in Friedreich’s ataxia: a clinical study of 75 patients. J Am Coll Cardiol 7:1370–1378PubMedCrossRefGoogle Scholar
  6. 6.
    Delatycki MB, Williamson R, Forrest SM (2000) Friedreich’s ataxia: an overview. J Med Genet 37:1–8PubMedCrossRefGoogle Scholar
  7. 7.
    Dutka DP, Donnelly JE, Nihoyannopoulos P et al (1999) Marked variation in the cardiomyopathy associated with Friedreich’s ataxia. Heart 81:141–147PubMedGoogle Scholar
  8. 8.
    Dürr A, Cossee M, Agid Y et al (1996) Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 355:1169–1175CrossRefGoogle Scholar
  9. 9.
    Filla A, De Michele G, Cavalcanti F et al (1996) The relationship between trinucleotide GAA repeat length and clinical features in Friedreich’s ataxia. Am J Hum Genet 59:554–560PubMedGoogle Scholar
  10. 10.
    Friedreich N (1863) Uber degenerative Atrophie der spinalen Hinterstrange. Virchows Arch Pathol Anat 26:391–419, 433–459; 27:1–26CrossRefGoogle Scholar
  11. 11.
    Gottdiener J, Hawley R, Maron B et al (1982) Characteristics of the cardiac hypertrophy in Friedreich’s ataxia. Am Heart J 103:525–531PubMedCrossRefGoogle Scholar
  12. 12.
    Harding A (1981) Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain 104:589–620PubMedCrossRefGoogle Scholar
  13. 13.
    Harding A (1984) The hereditary ataxias and related disorders. Churchill Livingstone, Edinburgh, pp 174–190Google Scholar
  14. 14.
    Harding AE (1993) Clinical features and classification of inherited ataxias. Adv Neurol 61:1–14PubMedGoogle Scholar
  15. 15.
    Harding A, Langton Hewer R (1983) The heart disease of Friedreich’s ataxia: a clinical and electrocardiographic study of 115 patients, with analysis of serial electrocardiographic changes in 30 cases. Q J Med 208:489–502Google Scholar
  16. 16.
    Hausse AO, Aggoun Y, Bonnet D et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–349PubMedCrossRefGoogle Scholar
  17. 17.
    Isnard R, Kalotka H, Dürr A et al (1997) Correlation between left ventricular hypertrophy and GAA trinucleotide repeat length in Friedreich’s ataxia. Circulation 95:2247–2249PubMedGoogle Scholar
  18. 18.
    Morvan D, Komajdaq M, DoDoan L et al (1992) Cardiomyopathy in Friedreich’s ataxia: a Doppler-echocardiographic study. Eur Heart J 13:1393–1398PubMedGoogle Scholar
  19. 19.
    Rustin P, Rötig A, Munnich A, Sidi D (2002) Heart hypertrophy and function are improved by idebenone in Friedreich’s ataxia. Free Radic Res 36:467–469PubMedCrossRefGoogle Scholar
  20. 20.
    Schöls L, Amoiridis G, Przuntek H et al (1997) Friedreich’s ataxia: revision of phenotype according to molecular genetics. Brain 120:2131–2140PubMedCrossRefGoogle Scholar
  21. 21.
    Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99:445–457PubMedCrossRefGoogle Scholar
  22. 22.
    Sutton M, Olukotun A, Tajik A et al (1980) Left ventricular function in Friedreich’s ataxia: an echocardiographic study. Br Heart J 44:309–316PubMedCrossRefGoogle Scholar
  23. 23.
    Underferth DV, Schmidt W, Baker P, Wooley C (1987) Morphologic and functional characteristics of the heart in Friedreich’s ataxia. Am J Med 82:5–10CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alaina Kipps
    • 1
  • Mark Alexander
    • 1
  • Steven D. Colan
    • 1
  • Kimberlee Gauvreau
    • 1
  • Leslie Smoot
    • 1
  • Lisa Crawford
    • 1
  • Basil T. Darras
    • 2
  • Elizabeth D. Blume
    • 1
  1. 1.Department of CardiologyBostonUSA
  2. 2.Department of NeurologyChildren’s Hospital, BostonBostonUSA

Personalised recommendations