Pediatric Cardiology

, 30:138

Serum Alkaline Phosphatase Reflects Post-Fontan Hemodynamics in Children

  • Alvin J. Chin
  • P. Stephens
  • E. Goldmuntz
  • M. B. Leonard
Original Article


Although survivors of Fontan palliation for a single ventricle are known to have lower cardiac index than patients with two-ventricle surgical reconstructions, it is unclear whether two frequently observed sequelae, short stature and protein-losing enteropathy (PLE), have hemodynamic origins. A serum marker that reflects hemodynamic status would be a tremendous asset in the long-term management of children with these sequelae. The authors recently noted severely reduced total alkaline phosphatase (TALP) levels in two children with early-onset PLE after Fontan operations, both of whom had low cardiac output at cardiac catheterization. Catheter-based or surgical interventions that rapidly increased cardiac output in these two patients resulted not only in relief of PLE but also in a prompt TALP rise. To examine whether the apparent correlation of low TALP with impaired cardiac output also is seen in Fontan patients without PLE, this study retrospectively examined the TALP data from two other Fontan patients who underwent cardiac catheterization specifically to assess the potential benefit of vasodilator therapy. The TALP levels were abnormally low in both cases but increased after uptitration of angiotensin-converting enzyme inhibition. Serum TALP activity, an indicator of osteoblastic function particularly in preadolescence, may be a marker of low cardiac output after a Fontan operation.


Fontan Bone Cardiac output Alkaline phosphatase Osteoblast Single ventricle 


  1. 1.
    Adachi H, Strauss W, Ochi H, Wagner HN Jr (1976) The effect of hypoxia on the regional distribution of cardiac output in the dog. Circ Res 39:314–319PubMedGoogle Scholar
  2. 2.
    Arnaud SB, Powell MR, Vernikos-Danellis J, Buchanan P (1988) Bone mineral and body composition after 30-day head down tilt bed rest. J Bone Miner Res 3:S119Google Scholar
  3. 3.
    Bar-Cohen Y, Perry SB, Keane JF, Lock JE (2005) Use of stents to maintain atrial defects and Fontan fenestrations in congenital heart disease. J Intervent Cardiol 18:111–118PubMedCrossRefGoogle Scholar
  4. 4.
    Berger J, Garattini E, Hua J-C, Udenfried S (1987) Cloning and sequencing of human intestinal alkaline phosphatase cDNA. Proc Natl Acad Sci USA 84:695–698PubMedCrossRefGoogle Scholar
  5. 5.
    Brun-Heath I, Taillandier A, Serre J-L, Mornet E (2005) Characterization of 11 novel mutations in the tissue nonspecific alkaline phosphatase gene responsible for hypophosphatasia and genotype-phenotype correlations. Mol Genet Metab 84:274–277Google Scholar
  6. 6.
    Cohen MI, Bush DM, Ferry RJ Jr et al (2000) Somatic growth failure after the Fontan operation. Cardiol Young 10:447–457PubMedCrossRefGoogle Scholar
  7. 7.
    Fontan F, Baudet E (1971) Surgical repair of tricuspid atresia. Thorax 26:240–248PubMedCrossRefGoogle Scholar
  8. 8.
    Griffith JF, Yeung DKW, Antonio GE et al (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951PubMedCrossRefGoogle Scholar
  9. 9.
    Griffith JF, Yeung DKW, Antonio GE et al (2006) Vertebral marrow fat content and diffusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838PubMedCrossRefGoogle Scholar
  10. 10.
    Gross PM, Heistad DD, Marcus ML (1979) Neurohumoral regulation of blood flow to bones and marrow. Am J Physiol Heart Circ Physiol 237:H440–H448Google Scholar
  11. 11.
    Henthorn PS, Raducha M, Kadesch T et al (1988) Sequence and characterization of the human intestinal alkaline phosphatase gene. J Biol Chem 263:12011–12019PubMedGoogle Scholar
  12. 12.
    Hillsley MV, Frangos JA (1994) Review: bone tissue engineering: role of interstitial fluid flow. Biotech Bioeng 43:573–581CrossRefGoogle Scholar
  13. 13.
    Jacobs ML, Schneider DJ, Pourmoghadam KK et al (2004) Total cavopulmonary connection to one lung. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 7:72–79PubMedCrossRefGoogle Scholar
  14. 14.
    Janes JM, Musgrove JE (1950) Effect of arteriovenous fistula on growth of bone: an experimental study. Surg Clin North Am 30:1191–1200PubMedGoogle Scholar
  15. 15.
    Janes JM, Jennings WK (1961) Effect of induced arteriovenous fistula on leg length: 10-year observations. Proc Staff Meetings Mayo Clinic 36:1–11Google Scholar
  16. 16.
    Joiner TA, Foster C, Shope T (2000) The many faces of vitamin D deficiency rickets. Ped Rev 21:296–302CrossRefGoogle Scholar
  17. 17.
    Kaulitz R, Luhmer I, Bergmann F et al (1997) Sequelae after modified Fontan operation: postoperative haemodynamic data and organ function. Heart 78:154–159PubMedGoogle Scholar
  18. 18.
    Kreutzer J, Lock JE, Jonas RA, Keane JF (1997) Transcatheter fenestration dilation and/or creation in postoperative Fontan patients. Am J Cardiol 79:228–232PubMedCrossRefGoogle Scholar
  19. 19.
    Leupin O, Kramer I, Collette NM et al (2007) Control of the SOST bone enhancer by PTH using Mef2 transcription factors. J Bone Miner Res 22:1957–1967PubMedCrossRefGoogle Scholar
  20. 20.
    Malone AM, Anderson CT, Tummala P et al (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330 (erratum in Proc Natl Acad Sci U S A. [2008] 105:825)PubMedCrossRefGoogle Scholar
  21. 21.
    Millan JL (1986) Molecular cloning and sequence analysis of human placental alkaline phosphatase. J Biol Chem 261:3112–3115PubMedGoogle Scholar
  22. 22.
    Qin Y-X, Lin W, Rubin C (2002) The pathway of bone fluid flow as defined by in vivo intramedullary pressure and streaming potential measurements. Ann Biomed Eng 30:693–702PubMedCrossRefGoogle Scholar
  23. 23.
    Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358PubMedGoogle Scholar
  24. 24.
    Rauchenzauner M, Schmid A, Heinz-Erian P et al (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449PubMedCrossRefGoogle Scholar
  25. 25.
    Redington A (2006) The physiology of the Fontan circulation. Progr Pediatr Cardiol 22:179–186CrossRefGoogle Scholar
  26. 26.
    Ringel RE, Peddy SB (2003) Effect of high-dose spironolactone on protein-losing enteropathy in patients with Fontan palliation of complex congenital heart disease. Am J Cardiol 91:1031–1032PubMedCrossRefGoogle Scholar
  27. 27.
    Ryerson L, Goldberg C, Rosenthal A, Armstrong A (2008) Usefulness of heparin therapy in protein-losing enteropathy associated with single-ventricle palliation. Am J Cardiol 101:248–251PubMedCrossRefGoogle Scholar
  28. 28.
    Schonau E, Rauch F (2003) Biochemical markers of bone metabolism. In: Glorieux F (ed) Pediatric bone: biology and diseases. Academic Press, San Diego, pp 339–357Google Scholar
  29. 29.
    Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteopor Int 11:281–294CrossRefGoogle Scholar
  30. 30.
    Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow? FASEB J 8:875–878PubMedGoogle Scholar
  31. 31.
    Van Coeverden S, Netelenbos J, De Ridder C et al (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57:107–116CrossRefGoogle Scholar
  32. 32.
    Van Hoof VO, Hoylaerts MF, Geryl H et al (1990) Age and sex distribution of alkaline phosphatase isoenzymes by agarose electrophoresis. Clin Chem 36:875–878PubMedGoogle Scholar
  33. 33.
    Vanderhoeft PJ, Kelly PJ, Janes JM, Peterson LFA (1963) Growth and structure of bone distal to an arteriovenous fistula: quantitative analysis of tetracycline-induced transverse growth patterns. J Bone Joint Surg 45B:582–596Google Scholar
  34. 34.
    Weiss MJ, Henthorn PS, Lafferty MA et al (1986) Isolation and characterization of a cDNA encoding a human liver/bone/kidney-type alkaline phosphatase. Proc Natl Acad Sci USA 83:7182–7186PubMedCrossRefGoogle Scholar
  35. 35.
    Whitfield JF (2003) Primary cilium: is it an osteocyte’s strain-sensing flowmeter? J Cell Biochem 89:233–237PubMedCrossRefGoogle Scholar
  36. 36.
    Williams LR, Leggett RW (1989) Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas 10:187–217PubMedCrossRefGoogle Scholar
  37. 37.
    Wilson J, Russell J, Williams W, Benson L (2005) Fenestration of the Fontan circuit as treatment for plastic bronchitis. Pediatr Cardiol 26:717–719PubMedCrossRefGoogle Scholar
  38. 38.
    Witzel C, Sreeram N, Coburger S et al (2006) Outcome of muscle and bone development in congenital heart disease. Eur J Pediatr 165:168–174PubMedCrossRefGoogle Scholar
  39. 39.
    Xiao Z, Zhang S, Mahlios J et al (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alvin J. Chin
    • 1
    • 4
  • P. Stephens
    • 2
  • E. Goldmuntz
    • 3
    • 4
  • M. B. Leonard
    • 4
    • 5
  1. 1.Division of Cardiology, Abramson Research CenterThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  2. 2.Division of CardiologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  3. 3.Division of Cardiology, Abramson Research CenterThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of PediatricsUniversity of Pennsylvania School of MedicinePhiladelphiaUSA
  5. 5.Division of NephrologyThe Children’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations