Pediatric Cardiology

, Volume 25, Issue 5, pp 513–521 | Cite as

Restrictive Ventilatory Impairment and Arterial Oxygenation Characterize Rest and Exercise Ventilation in Patients After Fontan Operation

  • H. Ohuchi
  • H. Ohashi
  • H. Takasugi
  • O. Yamada
  • T. Yagihara
  • S. Echigo


The objective of this study was evaluate the relationships between abnormal pulmonary circulation, lung function, and respiratory response during exercise in Fontan patients. Pulmonary function and cardiopulmonary exercise tests were performed in 101 Fontan patients and 122 controls. A small vital capacity (VC) with a high residual volume-to-total lung capacity ratio and a slight but significant low arterial saturation with hypocapnia were observed in Fontan patients. The number of surgical procedures determined VC. Total cavopulmonary connection, fenestration, higher pulmonary arterial wedge pressure, and smaller VC were independent determinants of low arterial saturation, which was the only determinant of hypocapnia. Arterial saturation decreased during exercise and resting arterial saturation correlated with that at peak exercise. Improvement in dead space ventilation was less in Fontan patients and was independently determined by resting arterial saturation. A steeper minute ventilation–carbon dioxide production slope was determined by resting arterial saturation, arterial carbon dioxide tension, and peak oxygen uptake. In Fontan patients, in addition to dead space ventilation, surgery-related reduced VC, the type of repair, and high pulmonary arterial wedge pressure cause arterial desaturation with subsequent hypocapnia, resulting in accelerated inefficient ventilation at rest and during exercise.


Fontan procedure Hypoxia Hypocapnia Exercise Ventilation 


  1. 1.
    Beaver, WL, Wasserman, K, Whipp, BJ 1986A new method for detecting anaerobic threshold by gas exchangeJ Appl Physiol6020202027PubMedGoogle Scholar
  2. 2.
    Chua, TP, Clark, AL, Aham, AA, Coats, AJ 1996Relation between chemosensitivity and the ventilatory response to exercise in chronic heart failureJ Am Coll Cardiol27650657CrossRefPubMedGoogle Scholar
  3. 3.
    Clark, AL, Coats, AJ 1992The mechanisms underlying the increased ventilatory response to exercise in chronic stable heart failureEur Heart J1316981708PubMedGoogle Scholar
  4. 4.
    Cunningham, DJC, Robbins, PA, Wolff, CB 1986

    Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 and in arterial pH

    Handbook of Physiology BethesdaMD.475528
    Google Scholar
  5. 5.
    Dimopoulou, I, Tsintzas, OK, Alivizatos, PA, Tzelepis, GE 2001Pattern of breathing during progressive exercise in chronic heart failureInt J Cardiol81117121CrossRefPubMedGoogle Scholar
  6. 6.
    Driscoll, DJ, Danielson, GK, Puga, FJ,  et al. 1986Exercise tolerance and cardiorespiratory response to exercise after the Fontan operation for tricuspid atresia or functional single ventricleJ Am Coll Cardiol710871094PubMedGoogle Scholar
  7. 7.
    Durongpisitkul, K, Driscoll, DJ, Mahoney, DW,  et al. 1997Cardiorespiratory response to exercise after modified Fontan operation: determinants of performanceJ Am Coll Cardiol29785790CrossRefPubMedGoogle Scholar
  8. 8.
    Enghoff, H 1938Volumen inefficax: Bemerkungzur Frage des shadlichen Raumes, Upsala LakForen Forh. 44Google Scholar
  9. 9.
    Eriksson, BO, Bjarge, B 1975Oxygen uptake, arterial blood gases and blood lactate concentration during submaximal and maximal exercise in adult subjects with shunt-opened tetralogy of Fallot Acta Ned Scad.97187193PubMedGoogle Scholar
  10. 10.
    Fredriksen, PM, Therrien, J, Veldtman, G,  et al. 2001Lung function and aerobic capacity in adult patients following modified Fontan procedureHeart85295299CrossRefPubMedGoogle Scholar
  11. 11.
    Narkiewicz, K, Pesek, CA, Borne, PJH, Kato, M, Somers, VK 1999Enhanced sympathetic and ventilatory responses to central chemoreflex activation in heart failureCirculation100262267PubMedGoogle Scholar
  12. 12.
    Ohuchi, H, Arakaki, Y, Hiraumi, Y, Tasato, H, Kamiya, T 1998Cardiorespiratory response during exercise in patients with cyanotic congenital heart disease with and without a Fontan operation and in patients with congestive heart failureInt J Cardiol66241251CrossRefPubMedGoogle Scholar
  13. 13.
    Ohuchi, H, Hasegawa, S, Yasuda, K,  et al. 2001Severely impaired cardiac autonomic nervous activity after the Fontan operationCirculation10415131518PubMedGoogle Scholar
  14. 14.
    Ohuchi, H, Katou, Y, Hayakawa, H, Arakaki, Y, Kamiya, T 1995Ventilatory response in children during progressive exercise testing: evaluation using ramp protocol on a treadmillJ Jpn Pediatr Soc9912461255Google Scholar
  15. 15.
    Ohuchi, H, Nakajima, T, Kawade, M, Matsuda, M, Kamiya, T 1996Measurement and validity of the ventilatory threshold in patients with congenital heart diseasePediatr Cardiol117714CrossRefGoogle Scholar
  16. 16.
    Ohuchi, H, Tasato, H, Sugiyama, Y, Arakaki, Y, Kamiya, T 1998Responses of plasma norepinephrine and heart rate during exercise in patients after Fontan operation and patients with residual right ventricular outflow tract obstruction after definitive reconstructionPediatr Cardiol19408413CrossRefPubMedGoogle Scholar
  17. 17.
    Ohuchi, H, Yasuda, K, Hasegawa, S,  et al. 2001Influence of ventricular morphology on aerobic exercise capacity in patients after the Fontan operationJ Am Coll Cardiol3719671974CrossRefPubMedGoogle Scholar
  18. 18.
    Oren, A, Wasserman, K, Davis, JA, Whipp, BJ 1981Effect of CO2 set point on ventilatory response to exerciseJ Appl Physiol51185189PubMedGoogle Scholar
  19. 19.
    Rhodes, J 1998Concerning the Fontan patients’ excessive minute ventilation during exerciseJ Am Coll Cardiol321132Google Scholar
  20. 20.
    Rhodes, J, Garofano, RP, Bowman, FO,Jr,  et al. 1990Effect of the right ventricular anatomy on the cardiopulmonary response to exercise: implications for the Fontan procedureCirculation8118811887PubMedGoogle Scholar
  21. 21.
    Somers, VK, Mark, AL, Abboud, FM 1991Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humansJ Clin Invest8719531957PubMedGoogle Scholar
  22. 22.
    Ward, SA, Whipp, BJ, Koyal, S, Wasserman, K 1983Influence of body CO2 stores on ventilatory dynamics during exerciseJ Appl Physiol55742749PubMedGoogle Scholar
  23. 23.
    Wasserman, K, Whipp, BJ, Koyal, SN, Beaver, WL 1973Anaerobic threshold and respiratory gas exchange during exerciseJ Appl Physiol35236243PubMedGoogle Scholar
  24. 24.
    Wasserman, K, Zhang, YY, Gitt, A,  et al. 1997Lung function and exercise gas exchange in chronic heart failureCirculation9622212227PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • H. Ohuchi
    • 1
    • 3
  • H. Ohashi
    • 1
  • H. Takasugi
    • 1
  • O. Yamada
    • 1
  • T. Yagihara
    • 2
  • S. Echigo
    • 1
  1. 1.Department of PediatricsNational Cardiovascular CenterSuitaJapan
  2. 2.Department of Thoracic surgeryNational Cardiovascular CenterSuitaJapan
  3. 3.Physiological Imaging LabratoryUSA

Personalised recommendations