An Enhanced Baillon–Haddad Theorem for Convex Functions Defined on Convex Sets

  • Pedro Pérez-Aros
  • Emilio VilchesEmail author


The Baillon–Haddad theorem establishes that the gradient of a convex and continuously differentiable function defined in a Hilbert space is \(\beta \)-Lipschitz if and only if it is \(1/\beta \)-cocoercive. In this paper, we extend this theorem to Gâteaux differentiable and lower semicontinuous convex functions defined on an open convex set of a Hilbert space. Finally, we give a characterization of \(C^{1,+}\) convex functions in terms of local cocoercivity.


Convex function Cocoercivity Lipschitz function Nonexpansive operator Baillon–Haddad Theorem 

Mathematics Subject Classification

47H05 47H09 47N10 49J50 90C25 



The authors wish to thank the referees for providing several helpful suggestions.


  1. 1.
    Abbas, B., Attouch, H.: Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator. Optimization 64(10), 2223–2252 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Attouch, H., Briceño, A.L., Combettes, P.-L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48(5), 3246–3270 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et $n$-cycliquement monotones. Isr. J. Math. 26(2), 137–150 (1977)CrossRefGoogle Scholar
  4. 4.
    Bauschke, H.-H., Combettes, P.-L.: The Baillon-Haddad theorem revisited. J. Convex Anal. 17(3–4), 781–787 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bauschke, H.-H., Combettes, P.-L.: Convex analysis and monotone operator theory in Hilbert spaces, 2nd edn. CMS Books Math./Ouvrages Math. SMC, Springer, Cham (2017)CrossRefGoogle Scholar
  6. 6.
    Bauschke, H.-H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: first-order methods revisited and applications. Math. Oper. Res. 42(2), 330–348 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Borwein, J., Vanderwerff, J.: Convex Functions: Constructions, Characterizations and Counterexamples, Volume 109 of Encyclopedia Mathematical Applications. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  8. 8.
    Boţ, R.I., Csetnek, E.R.: A dynamical system associated with the fixed points set of a nonexpansive operator. J. Dyn. Differ. Equ. 29(1), 155–168 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Byrne, C.: On a generalized Baillon-Haddad theorem for convex functions on Hilbert space. J. Convex Anal. 22(4), 963–967 (2015)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM J. Optim. 3(3), 538–543 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Combettes, P.-L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53(5–6), 475–504 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Contreras, A., Peypouquet, J.: Asymptotic equivalence of evolution equations governed by cocoercive operators and their forward discretizations. J. Optim. Theory Appl. (2018)Google Scholar
  13. 13.
    Hiriart-Urruty, J.-B., Strodiot, J.-J., Nguyen, V.H.: Generalized Hessian matrix and second-order optimality conditions for problems with $C^{1,1}$ data. Appl. Math. Optim. 11(1), 43–56 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mordukhovich, B.S.: Variational analysis and generalized differentiation. I. Volume 330 of Grundlehren Math. Wiss. Springer, Berlin, 2006. Corrected, 2nd printing, (2013)Google Scholar
  15. 15.
    Rockafellar, R.-T., Wets, R.: Variational Analysis, Volume 317 of Grundlehren Math. Wiss. Springer, Berlin (1998). Corrected 3rd printing 2009Google Scholar
  16. 16.
    Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim. 29(1), 119–138 (1991)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhu, D.L., Marcotte, P.: Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6(3), 714–726 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciencias de la IngenieríaUniversidad de O’HigginsRancaguaChile
  2. 2.Instituto de Ciencias de la EducaciónUniversidad de O’HigginsRancaguaChile

Personalised recommendations