Locally Risk-Minimizing Hedging of Counterparty Risk for Portfolio of Credit Derivatives

  • Lijun Bo
  • Claudia CeciEmail author


We discuss dynamic hedging of counterparty risk for a portfolio of credit derivatives by the local risk-minimization approach. We study the problem from the perspective of an investor who, trading with credit default swaps (CDS) referencing the counterparty, wants to protect herself/himself against the loss incurred at the default of the counterparty. We propose a credit risk intensity-based model consisting of interacting default intensities by taking into account direct contagion effects. The portfolio of defaultable claims is of generic type, including CDS portfolios, risky bond portfolios and first-to-default claims with payments allowed to depend on the default state of the reference firms and counterparty. Using the martingale representation of the conditional expectation of the counterparty risk price payment stream under the minimal martingale measure, we recover a closed-form representation for the locally risk minimizing strategy in terms of classical solutions to nonlinear recursive systems of Cauchy problems. We also discuss applications of our framework to the most prominent classes of credit derivatives.


Local risk-minimization Counterparty risk Recursive system of Cauchy problems 

AMS 2000 subject classifications

60J25 60J75 60H30 91B28 



The authors would like to thank two anonymous referees for the careful reading and helpful comments to improve the presentation of this paper. The research of L. Bo is supported by Natural Science Foundation of China under Grant 11471254.


  1. 1.
    Ansel, J., Stricker, C.: Unicité et existence de la loi minimale. In: Séminaire de Probabilités XXVII, 22–29. Springer, New York (1993)Google Scholar
  2. 2.
    Arai, T.: Minimal martingale measures for jump diffusion processes. J. Appl. Probab. 41, 263–270 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Azizpour, S., Giesecke, K., Schwenkler , G.: Exploring the sources of default clustering. J. Financ. Econom. Forthcoming (2017)Google Scholar
  4. 4.
    Biagini, F., Cretarola, A.: Quadratic hedging methods for defaultable claims. Appl. Math. Optim. 56, 425–443 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Biagini, F., Cretarola, A.: Local risk-minimization for defaultable markets. Math. Financ. 19, 669–689 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Biagini, F., Cretarola, A.: Local risk-minimization for defaultable claims with recovery process. Appl. Math. Optim. 65, 293–314 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bielecki, T., Jeanblanc, M., Rutkowski , M.: Hedging of defaultable claims. In: R.A. Carmona, E. Cinlar, I. Ekeland, E. Jouini, N. Touzi (eds.) Paris-Princeton Lectures on Mathematical Finance 2003. Lecture Notes in Mathematics, 1–32, Springer, Berlin (2004a)Google Scholar
  8. 8.
    Bielecki, T., Jeanblanc, M., Rutkowski, M.: Pricing and hedging of credit risk: replication and mean-variance approaches I. In: Yin, G., Zhang, Q. (eds.) Mathematics of Finance, pp. 37–53. AMS, Providence, RI (2004b)CrossRefGoogle Scholar
  9. 9.
    Bielecki, T., Jeanblanc, M., Rutkowski, M.: Pricing and trading credit default swaps in a hazard process model. Ann. Appl. Probab. 18, 2495–2529 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bo, L., Capponi, A.: Portfolio choice with market-credit risk dependencies. SIAM J. Control Optim. 56(4), 3050–3091 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bo, L., Capponi, A., Chen, P.C.: Credit Portfolio selection with decaying contagion intensities. Math. Financ. (2018).
  12. 12.
    Brigo, D., Capponi, A., Pallavicini, A.: Arbitrage-free bilateral counterparty risk valuation under collateralization and application to credit default swaps. Math. Financ. 24, 125–146 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Canabarro, E.: Pricing and hedging counterparty risk: lessons re-learned? Chapter 6. In: Canabarro, E. (ed.) Counterparty Credit Risk. Risk Books, London (2010)Google Scholar
  14. 14.
    Capponi, A.: Pricing and mitigation of counterparty credit exposure. In: Fouque, J.P., Langsam, J. (eds.) Handbook of Systemic Risk. Cambridge University Press, Cambridge (2013)Google Scholar
  15. 15.
    Ceci, C., Colaneri, K., Cretarola, A.: Local risk-minimization under restricted information on asset prices. Electron. J. Probab. 20, 1–30 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Ceci, C., Colaneri, K., Cretarola, A.: Unit-linked life insurance policies: optimal hedging in partially observable market models. Insurance Math. Econ. 76, 149–163 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Choulli, T., Krawczyk, L., Stricker, C.: \({{{{\cal{E}}}}}\)-martingales and their applications in mathematical finance. Ann. Probab. 26, 853–876 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Choulli, T., Vandaele, N., Vanmaele, M.: The Föllmer-Schweizer decomposition: comparison and description. Stoch. Process. Appl. 120, 853–872 (2010)CrossRefGoogle Scholar
  19. 19.
    Föllmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildenbrand, W., Mas-Colell, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. Elsevier, Amsterdam (1985)Google Scholar
  20. 20.
    Frei, C., Capponi, A., Brunetti, C.: Managing counterparty risk in OTC markets. Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, DC. (2017)
  21. 21.
    Frey, R., Backhaus, J.: Dynamic hedging of synthetic CDO tranches with spread risk and default contagion. J. Econ. Dyn. Contr. 34, 710–724 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Frey, R., Schmidt, T.: Pricing and hedging of credit derivatives via the innovations approach to nonlinear filtering. Financ. Stoch. 16, 105–133 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Gregory, J.: Counterparty Credit Risk: The New Challenge for Global Financial Markets. Wiley, Chichester (2010)Google Scholar
  24. 24.
    Heath, D., Schweizer, M.: Martingales versus PDEs in finance: an equivalence result with examples. J. Appl. Probab. 37, 947–957 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Okhrati, R., Balbás, A., Garridoz, J.: Hedging of defaultable claims in a structural model using a locally risk-minimizing approach. Stoch. Process. Appl. 124, 2868–2891 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)CrossRefGoogle Scholar
  27. 27.
    Schweizer, M.: Hedging of Options in a General Semimartingale Model, p. 8615. Diss. ETH, Zurich (1988)Google Scholar
  28. 28.
    Schweizer, M.: On the minimal martingale measure and the Föllmer-Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)CrossRefGoogle Scholar
  29. 29.
    Schweizer, M.: A guided tour through quadratic hedging approaches. In: Jouini, E., Cvitanic, J., Musiela, M. (eds.) Option Pricing, Interest Rates and Risk Management, pp. 538–574. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  30. 30.
    Schweizer, M.: Local risk-minimization for multidimensional assets and payment streams. Banach Cent. Publ. 83, 213–229 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Tankov, P.: Pricing and hedging in exponential Lévy models: review of recent results. Paris-Princeton Lecture Notes in Mathematics Finance. Springer, New York (2010)Google Scholar
  32. 32.
    Wang, W., Zhou, J., Qian, L., Su, X.: Local risk minimization for vulnerable European contingent claims on non tradable assets under regime switching models. Stoch. Anal. Appl. 34, 662–678 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anPeople’s Republic of China
  2. 2.Department of EconomicsUniversity “G. d’Annunzio” of Chieti-PescaraPescaraItaly

Personalised recommendations