Skip to main content
Log in

On Quasi-stationary Mean Field Games Models

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We explore a mechanism of decision-making in mean field games with myopic players. At each instant, agents set a strategy which optimizes their expected future cost by assuming their environment as immutable. As the system evolves, the players observe the evolution of the system and adapt to their new environment without anticipating. With a specific cost structures, these models give rise to coupled systems of partial differential equations of quasi-stationary nature. We provide sufficient conditions for the existence and uniqueness of classical solutions for these systems, and give a rigorous derivation of these systems from N-players stochastic differential games models. Finally, we show that the population can self-organize and converge exponentially fast to the ergodic mean field games equilibrium, if the initial distribution is sufficiently close to it and the Hamiltonian is quadratic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Bardi, M., Cirant, M.: Mean field games models of segregation. Math. Models Methods Appl. Sci. 27, 75–113 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, O., Bardi, M.: Ergodicity, Stabilization and Singular Perturbations for Bellman-Isaacs Equations. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  3. Arisawa, M., Lions, P.-L.: On ergodic stochastic control. Commun. Partial Differ. Equ. 23, 333–358 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bardi, M., Feleqi, E.: Nonlinear elliptic systems and mean-field games. Nonlinear Differ. Equ. Appl. 23(4), 44 (2016)

    Article  MathSciNet  Google Scholar 

  5. Caines, P.-E., Huang, M., Malhamé, P.: Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–251 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Caines, P.-E., Huang, M., Malhamé, P.: Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized \(\epsilon \)-Nash equilibria. IEEE Trans. Automat. Control 52(9), 1560–1571 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Poretta, A.: Long time average of mean field games. Netw. Heterog. Media 7, 279–301 (2012)

    Article  MathSciNet  Google Scholar 

  8. Cardaliaguet, P., Lasry, J.-M., Lions, P.-L., Poretta, A.: Long time average of mean field games, with nonlocal coupling. SIAM J. Control Optim. 51, 3558–3591 (2013)

    Article  MathSciNet  Google Scholar 

  9. Cardaliaguet, P., Delarue, F., Lasry, J.-M., Lions, P.-L.: The master equation and the convergence problem in mean field games (2015). arXiv:1509.02505v1

  10. Cristiani, E., Priuli, F.S., Tosin, A.: Modeling rationality to control self-organization of crowds: an environmental approach (2015). arXiv:1406.7246

    Article  MathSciNet  Google Scholar 

  11. Degond, P., Motsch, S.: Collective dynamics and self-organization: some challenges and an example. ESAIM 45, 1–7 (2014)

    Article  MathSciNet  Google Scholar 

  12. Degond, P., Liu, J.-G., Ringhofer, C.: Large-scale dynamics of mean-field games driven by local Nash equilibria. J. Nonlinear Sci. 24, 93–115 (2014)

    Article  MathSciNet  Google Scholar 

  13. Degond, P., Liu, J.-G., Ringhofer, C.: Evolution of the distribution of wealth in an economic environment driven by local Nash equilibria. J. Stat. Phys. 154, 751–780 (2014)

    Article  MathSciNet  Google Scholar 

  14. Degond, P., Liu, J.-G., Ringhofer, C.: Evolution of wealth in a non-conservative economy driven by local Nash equilibria Phil. Trans. R. Soc. A 372(2028), 20130394 (2014)

    Article  MathSciNet  Google Scholar 

  15. Degond, P., Herty, M., Liu, J.-G.: Meanfield games and model predictive control. Commun. Math. Sci. 15, 1403–1422 (2017)

    Article  MathSciNet  Google Scholar 

  16. Feleqi, E.: The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3(4), 523–536 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order Classics in Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  18. Gomes, D.A., Nurbekyan, L., Sedjro, M.: One-dimensional forward-forward mean-field games. Appl. Math. Optim. 74(3), 619–642 (2016)

    Article  MathSciNet  Google Scholar 

  19. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type, vol. 23. American Mathematical Society, Providence (1988)

    Google Scholar 

  20. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  21. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  22. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  23. Marchi, C.: Continuous dependence estimates for the ergodic problem of Bellman equation with an application to the rate of convergence for the homogenization problem. Calc. Var. Partial. Differ. Equ. 51, 539–553 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mckean, H.P.: Propagation of chaos for a class of non-linear parabolic equations. Lect. Ser. Differ. Equ. 7, 41–57 (1967)

    MathSciNet  Google Scholar 

  25. Mehta, P.G., Meyn, S.P., Shanbhag, U.V., Yin, H.: Learning in mean-field oscillator games. In: Proceedings of the IEEE Conference on Decision and Control, Atlanta, pp. 3125–3132 (2010)

  26. Mehta, P.G., Meyn, S.P., Shanbhag, U.V., Yin, H.: Bifurcation analysis of a heterogeneous mean-field oscillator game. In: Proceedings of the IEEE Conference on Decision and Control, Orlando, pp. 3895–3900 (2011)

  27. Mehta, P.G., Meyn, S.P., Shanbhag, U.V., Yin, H.: Synchronization of coupled oscillators is a game. IEEE Trans. Autom. Control 57(4), 920–935 (2012)

    Article  MathSciNet  Google Scholar 

  28. Méléard, S.: Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models. Probab. Models Nonlinear Partial Differ. Equ. 1627, 42–95 (1996)

    Article  MathSciNet  Google Scholar 

  29. Rachev, T., Rüschendorf, L.: Mass Transportation Problems. Vol I: Theory; Vol II: Applications Probability and Its Applications. Springer, New York (1998)

    MATH  Google Scholar 

  30. Smart, D.R.: Fixed Point Theorems Cambridge Tracts in Mathematics, vol. 66. Cambridge University Press, London (1974)

    Google Scholar 

  31. Sznitman, A.-S.: Ecole d’Eté de Probabilités de Saint-Flour XIX–1989. In: Hennequin, P.-L. (ed.) Topics in Propagation of Chaos, pp. 165–251. Springer, Berlin (1991)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program ”Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR), and partially supported by project (ANR-16-CE40-0015-01) on mean field games. The author would like to thank Martino Bardi and Pierre Cardaliaguet for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charafeddine Mouzouni.

Appendix A. Elementary Facts on the Fokker–Planck Equation

Appendix A. Elementary Facts on the Fokker–Planck Equation

Let \(V:[0,T]\times Q\rightarrow {\mathbb {R}}\) be a given bounded vector field, which is continuous in time and Hölder continuous in space, and we consider the following Fokker–Planck equation:

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}m-\sigma \Delta m-\mathrm{div}(m V)=0 \quad \text{ in } (0,T)\times Q,\\&m(0)=m_{0} \quad \text{ in } Q; \end{aligned} \right. \end{aligned}$$
(A.1)

and the following stochastic differential equation:

$$\begin{aligned} \,\mathrm{d}\mathbb {X}_{t}= V(t,\mathbb {X}_{t})\,\mathrm{d}t+ \sqrt{2\sigma }\,\mathrm{d}B_{t}\quad t\in (0,T], \quad \mathbb {X}_{0}= Z_{0}, \end{aligned}$$
(A.2)

where \((B_{t})\) is a standard d-dimensional Brownian motion over some probability space \((\Omega , \mathcal {F},\mathbb {P})\) and \(Z_{0}\in L^{1}(\Omega )\) is random and independent of \((B_{t})\). Under these assumptions, there is a unique solution to (A.2) and the following hold:

Lemma A.1

If \(m_{0}=\mathcal {L}(Z_{0})\) then, \(m(t)=\mathcal {L}(\mathbb {X}_{t})\) is a weak solution to (A.1) and there exists a constant \(C_{T}>0\) such that, for any \(t,s \in [0,T],\)

$$\begin{aligned} \,{\mathbf{d}}_{1}(m(t),m(s)) \le C_{T}(1+\Vert V\Vert _{\infty })|t-s |^{1/2}. \end{aligned}$$

Proof

The first assertion is a straightforward consequence of Itô’s formula. On the other hand, for any 1-Lipschitz continuous function \(\phi \) and any \(t\ge s\), one has

$$\begin{aligned} \int _{{\mathbb {T}}^{d}}\phi (x) \,\mathrm{d}(m(t)-m(s))(x)\le & {} {\mathbb {E}}\vert \phi (\mathbb {X}_{t})-\phi (\mathbb {X}_{s}) \vert \le {\mathbb {E}}\vert \mathbb {X}_{t}-\mathbb {X}_{s} \vert \\\le & {} {\mathbb {E}}\left[ \int _{s}^{t}\vert V(u,\mathbb {X}_{u}) \vert \,\mathrm{d}u + \sqrt{2\sigma } \vert B_{t}-B_{s} \vert \right] \\\le & {} \Vert V \Vert _{\infty }(t-s)+ \sqrt{2\sigma (t-s)}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouzouni, C. On Quasi-stationary Mean Field Games Models. Appl Math Optim 81, 655–684 (2020). https://doi.org/10.1007/s00245-018-9484-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-018-9484-y

Keywords

Mathematics Subject Classification

Navigation