Advertisement

Relaxation for Optimal Design Problems with Non-standard Growth

  • Ana Cristina Barroso
  • Elvira ZappaleEmail author
Article

Abstract

In this paper we investigate the possibility of obtaining a measure representation for functionals arising in the context of optimal design problems under non-standard growth conditions and perimeter penalization. Applications to modelling of strings are also provided.

Keywords

Measure representation Non-standard growth conditions Optimal design Sets of finite perimeter Convexity 

Mathematics Subject Classification

49J45 74K10 

Notes

Acknowledgements

The authors would like to thank CMAF-CIO at the Universidade de Lisboa, CIMA at the Universidade de Évora and Dipartimento di Ingegneria Industriale at the Università degli Studi di Salerno, where this research was carried out. We also gratefully acknowledge the support of INDAM GNAMPA, Programma Professori Visitatori 2017. The research of ACB and EZ was partially supported by the Fundação para a Ciência e a Tecnologia through Project UID/MAT/04561/2013 and project UID/MAT/04674/2013, respectively.

References

  1. 1.
    Acerbi, E., Dal Maso, G.: New lower semicontinuity results for polyconvex integrals. Calc. Var. Partial Differ. Equ. 2(3), 329–371 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elast. 25, 137–148 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Acerbi, E., Bouchitté, G., Fonseca, I.: Relaxation of convex functionals: the gap problem. Ann. Inst. H. Poincaré Anal. Non Linéaire 20(3), 359–390 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Buttazzo, G.: An optimal design problem with perimeter penalization. Calc. Var. Partial Differ. Equ. 1, 55–69 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)zbMATHGoogle Scholar
  6. 6.
    Ball, J.M., Murat, F.: \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58, 225–253 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Barroso, A.C., Matias, J., Morandotti, M., Owen, D.: Second-order structured deformations: relaxation, integral representation and applications. Arch. Ration. Mech. Anal. 225, 1025–1072 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Belgacem, H.Ben: Relaxation of singular functionals defined on Sobolev spaces. ESAIM Control Optim. Calc. Var. 5, 71–85 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bouchitté, G., Fonseca, I., Malý, J.: The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. R. Soci. Edinb. 128 A, 463–479 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bouchitté, G., Fonseca, I., Mascarenhas, M.L.: Bending moment in membrane theory. J. Elast. 73(1–3), 75–99 (2004)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Braides, A., Fonseca, I., Francfort, G.: 3D–2D asymptotic analysis for inhomogeneous thin films. Indiana Univ. Math. J. 49(4), 1367–1404 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carita, G., Zappale, E.: 3D–2D dimensional reduction for a nonlinear optimal design problem with perimeter penalization. C. R. Math. Acad. Sci. Paris 350(23–24), 1011–1016 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Carita, G., Zappale, E.: Relaxation for an optimal design problem with linear growth and perimeter penalization. Proc. R. Soc. Edinb. A 145, 223–268 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Coscia, A., Mucci, D.: Integral representation and \(\Gamma \)-convergence of variational integrals with \(p(x)\)-growth. ESAIM Control Optim. Calc. Var. 7, 495–519 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dacorogna, B.: Direct Methods in the Calculus of Variations (Applied Mathematical Sciences), vol. 78, 2nd edn. Springer, New York (2008)zbMATHGoogle Scholar
  16. 16.
    Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progr. Nonlinear Differential Equations Appl. Birkhäuser Boston Inc, Boston (1983)Google Scholar
  17. 17.
    Evans, L.C., Gariepy, R.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)zbMATHGoogle Scholar
  18. 18.
    Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(W^{1,p}\) Spaces, Springer Monographs in Mathematics. Springer, New York (to appear)Google Scholar
  19. 19.
    Fonseca, I., Francfort, G.: 3D-2D asymptotic analysis of an optimal design problem for thin films. J. Reine Angew. Math. 505, 173–202 (1998)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Fonseca, I., Malý, J.: Relaxation of multiple integrals below the growth exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 14, 309–338 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Fonseca, I., Müller, S.: \({\cal{A}}\)-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30(6), 1355–1390 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gangbo, W.: On the weak lower semicontinuity of energies with polyconvex integrands. J. Math. Pures Appl. 73(5), 455–469 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Gariepy, R., Pepe, W.D.: On the level sets of a distance function on a Minkowski space. Proc. Am. Math. Soc. 31, 255–259 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Ioffe, A.D.: On lower semicontinuity of integral functionals I. SIAM J. Control Optim. 15, 521–538 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kinderlehrer, D., Pedregal, P.: Characterization of Young measures generated by gradients. Arch. Rational Mech. Anal. 115, 329–365 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal. 4(1), 59–90 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kohn, R.V., Lin, F.H.: Partial regularity for optimal design problems involving both bulk and surface energies. Chin. Ann. Math. Ser. B 20(2), 137–158 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems I. Commun. Pure Appl. Math. 39, 113–137 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems II. Commun. Pure Appl. Math. 39, 139–182 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kohn, R.V., Strang, G.: Optimal design and relaxation of variational problems III. Commun. Pure Appl. Math. 39, 353–377 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kristensen, J.: A necessary and sufficient condition for lower semicontinuity. Nonlinear Anal. 120, 43–56 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mingione, G., Mucci, D.: Integral functionals and the gap problem: sharp bounds for relaxation and energy concentration. SIAM J. Math. Anal. 36(5), 1540–1579 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Mucci, D.: Relaxation of variational functionals with piecewise constant growth conditions. J. Convex Anal. 10(2), 295–324 (2003)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Murat, F., Tartar, L., Calcul des variations et homogénéisation, Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, 1983), Collect. Dir. Études Rech. Élec. France, vol. 57, pp. 319–369. Eyrolles, Paris (1985)Google Scholar
  35. 35.
    Pedregal, P.: Jensen’s inequality in the calculus of variations. Differ. Integral Equ. 1, 57–72 (1994)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Soneji, P.: Lower semicontinuity and relaxation in \(BV\) of integrals with superlinear growth, Ph.D thesis, OXFORDGoogle Scholar
  37. 37.
    Soneji, P.: Relaxation in BV of integrals with superlinear growth. ESAIM Control Optim. Calc. Var. 20(4), 1078–1122 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Zhikov, V.V.: Passage to the limit in nonlinear variational problems, Mat. Sb., Rossiĭskaya Akademiya Nauk. Matematicheskiĭ Sbornik, 183(8), 47–84 (1992)Google Scholar
  39. 39.
    Ziemer, W.: Weakly Differentiable Functions. Springer, New York (1989)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática and CMAFIOFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Dipartimento di Ingegneria IndustrialeUniversità degli Studi di SalernoFiscianoItaly
  3. 3.CIMA (Universidade de Évora)ÉvoraPortugal

Personalised recommendations