Applied Mathematics & Optimization

, Volume 73, Issue 3, pp 393–418 | Cite as

Mean Field Type Control with Congestion



We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.


Mean field type control Weak solutions Optimal control 

Mathematics Subject Classification

35K40 35K55 35K65 35D30 49N70 49K20 


  1. 1.
    Achdou, Y.: Lecture notes in mathematics. In: Loreti, P., Tchou, N.A. (eds.) Finite Difference Methods for Mean Field Games, Hamilton–Jacobi Equations: Approximations, Numerical Analysis and Applications. Springer, Heidelber (2013)CrossRefGoogle Scholar
  2. 2.
    Achdou, Y., Laurière, M.: On the system of partial differential equations arising in mean field type control. DCDS A 35(9), 3879–3900 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bensoussan, A., Frehse, J.: Control and Nash games with mean field effect. Chin. Ann. Math. Ser. B 34(2), 161–192 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory. Springer briefs in mathematics. Springer, New York (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Cardaliaguet, P., Carlier, G., Nazaret, B.: Geodesics for a class of distances in the space of probability measures. Calc. Var. Partial Differ. Equ. 48(3–4), 395–420 (2013)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Cardaliaguet, P., Graber, P.J., Porretta, A., Tonon, D.: Second order mean field games with degenerate diffusion and local coupling. Nonlinear Differ. Equ. Appl. 22(5), 1287–1317 (2015)Google Scholar
  7. 7.
    Carmona, R., Delarue, F.: Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18(68), 15 (2013)MathSciNetMATHGoogle Scholar
  8. 8.
    Carmona, R., Delarue, F., Lachapelle, A.: Control of McKean–Vlasov dynamics versus mean field games. Math. Financ. Econ. 7(2), 131–166 (2013)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    DiPerna, R.J., Lions, P.-L.: Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98(3), 511–547 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gomes, D.A., Mitake H.: Existence for stationary mean field games with quadratic hamiltonians with congestion, arXiv preprint arXiv:1407.8267 (2014)
  11. 11.
    Gomes, D.A., Saúde, J.: Mean field games models—a brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gomes, D.A., Voskanyan V.: Short-time existence of solutions for mean-field games with congestion, ArXiv e-prints (2015)Google Scholar
  13. 13.
    Graber P.J.: Weak solutions for mean field games with congestion, ArXiv e-prints (2015)Google Scholar
  14. 14.
    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Lions P.-L.: Cours du Collège de France,, 2007-2011
  18. 18.
    McKean Jr., H.P.: A class of Markov processes associated with nonlinear parabolic equations. Proc. Natl. Acad. Sci. USA 56, 1907–1911 (1966)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Porretta, A.: Weak solutions to Fokker–Planck equations and mean field games. Arch. Ration. Mech. Anal. 216, 1–62 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Rockafellar, R.T.: Integrals which are convex functionals. II. Pac. J. Math. 39, 439–469 (1971)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Rockafellar R.T.: Convex analysis, Princeton Landmarks in Mathematics, Princeton University Press, Princeton (1997) Reprint of the 1970 original, Princeton PaperbacksGoogle Scholar
  22. 22.
    Sznitman, A.-S.: Topics in Propagation of Chaos, École d’Été de Probabilités de Saint-Flour XIX–1989. Lecture notes in mathematics. Springer, Berlin (1991)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, CNRSUniv. Paris Diderot, Sorbonne Paris CitéParisFrance

Personalised recommendations