Applied Mathematics & Optimization

, Volume 75, Issue 1, pp 55–73 | Cite as

Tomographic Reconstruction from a Few Views: A Multi-Marginal Optimal Transport Approach

  • I. Abraham
  • R. Abraham
  • M. BergouniouxEmail author
  • G. Carlier


In this article, we focus on tomographic reconstruction. The problem is to determine the shape of the interior interface using a tomographic approach while very few X-ray radiographs are performed. We use a multi-marginal optimal transport approach. Preliminary numerical results are presented.


Tomographic reconstruction Multi-marginal optimal transport Variational method Inverse problem Optimization 


  1. 1.
    Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abraham, R., Bergounioux, M., Trélat, E.: A penalization approach for tomographic reconstruction of binary axially symmetric objects. Appl. Math. Optim. 58, 345–371 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Batenburg, K.J.: Reconstructing binary images from discrete X-rays, Technical report, Leiden University (2004)Google Scholar
  4. 4.
    Batenburg, K.J.: A Network Flow Algorithm for Binary Image Reconstruction from Few Projections, vol. 4245, pp. 6–97. Springer, Berlin (2006)zbMATHGoogle Scholar
  5. 5.
    Bergounioux, M., Trélat, E.: A variational method using fractional order hilbert spaces for tomographic reconstruction of blurred and noised binary images. J. Funct. Anal. 259, 2296–2332 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benamou, J.-D., Carlier, G., Cuturi, M., Peyré, G., Nenna, L.: Iterative Bregman projections for regularized transportation problems. SIAM J. Sci. Comp. 37, A1111–A1138 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bonnotte, N.: Unidimensional and evolution methods for optimal transportation, PhD Thesis, University of Paris Sud Orsay. (2014)Google Scholar
  8. 8.
    Carlier, G., Ekeland, I.: Matching for teams. Econ. Theory 42(2), 397–418 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dellacherie, C., Meyer, P.-A.: Probabilities and Potential, Mathematical Studies, vol. 29. North-Holland, Hermann (1978)zbMATHGoogle Scholar
  10. 10.
    Dinten, J.-M.: Tomographie à partir d’un nombre limité de projections: régularisation par des champs markoviens, Ph.D. thesis, Université de Paris–Sud (1990)Google Scholar
  11. 11.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1999)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gangbo, W., Świȩch, A.: Optimal maps for the multidimensional Monge-Kantorovich problem. Comm. Pure Appl. Math. 51(1), 23–45 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Herman, G.: Image Reconstruction from Projections: The Fundamentals of Computerized Tomograph. Academic Press, New York (1980)zbMATHGoogle Scholar
  14. 14.
    Hstao, Y.L., Herman, G.T., Gabor, T.: A coordinate ascent approach to tomographic reconstruction of label images from a few projections. Discrete Appl. Math. 151, 184–197 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hstao, Y .L., Herman, G.T., Gabor, T.: Discrete tomography withj a very few views, using gibbs priors and a marginal posterior mode approach. Electron. Notes Discrete Math. 20, 399–418 (2005)CrossRefzbMATHGoogle Scholar
  16. 16.
    Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Natterer, F., Wübeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)CrossRefGoogle Scholar
  18. 18.
    Partouche-Sebban, D., Abraham, I.: Scintillateur pour dispositif d’imagerie, module scintillateur, dispositif d’imagerie avec un tel scintillateur et procédé de fabrication d’un scintillateur. French Patent No. 2922319 (2009)Google Scholar
  19. 19.
    Partouche-Sebban, D., Abraham, I., Laurio, S., Missault, C.: Multi-mev flash radiography in shock physics experiments: specific assemblages of monolithic scintillating crystals for use in ccd-based imagers, X-ray optics and instrumentation, Article ID 156984, p. 9 (2010)Google Scholar
  20. 20.
    Quinto, E.T.: Singularities of the x-ray transform and limited data tomography in \({\mathbb{R}} ^2\) and \({\mathbb{R}} ^3\). SIAM J. Math. Anal 24, 1215–1225 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rabin, J., Peyré, G., Delon, J., Bernot, M.: Wasserstein barycenter and its application to texture mixing. In: Scale Space and Variational Methods in Computer Vision, LNCS, vol. 6667, pp. 435-446, Springer (2012)Google Scholar
  22. 22.
    Santambrogio, F.: Optimal Transport for Applied Mathematicians. Birkhäuser Verlag, Basel (2015)CrossRefzbMATHGoogle Scholar
  23. 23.
    Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, 58. American Mathematical Society, Providence (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • I. Abraham
    • 1
  • R. Abraham
    • 2
  • M. Bergounioux
    • 2
    Email author
  • G. Carlier
    • 3
  1. 1.CEA Ile de FranceBruyères le ChâtelFrance
  2. 2.Université d’Orléans, UFR Sciences, MAPMO, UMR 7349Orléans Cedex 2France
  3. 3.CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de TassignyParis Cedex 16France

Personalised recommendations