Applied Mathematics & Optimization

, Volume 73, Issue 1, pp 165–194 | Cite as

On a Class of Nonlinear Viscoelastic Kirchhoff Plates: Well-Posedness and General Decay Rates

  • M. A. Jorge SilvaEmail author
  • J. E. Muñoz Rivera
  • R. Racke


This paper is concerned with well-posedness and energy decay rates to a class of nonlinear viscoelastic Kirchhoff plates. The problem corresponds to a class of fourth order viscoelastic equations of \(p\)-Laplacian type which is not locally Lipschitz. The only damping effect is given by the memory component. We show that no additional damping is needed to obtain uniqueness in the presence of rotational forces. Then, we show that the general rates of energy decay are similar to ones given by the memory kernel, but generally not with the same speed, mainly when we consider the nonlinear problem with large initial data.


Kirchhoff plates Well-posedness \(p\)-Laplacian General decay rates 

Mathematics Subject Classification

35B35 35B40 35L75 74D99 



The authors have been supported by the Brazilian Agency CNPq within the Project ”Ciências sem Fronteiras”, Grant #402689/2012-7. The first author was also partially supported by the CNPq Grant #441414/2014-1.


  1. 1.
    Alabau-Boussouira, F., Cannarsa, P., Sforza, D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(5), 1342–1372 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Andrade, D., Silva, J., Ma, T.F.: Exponential stability for a plate equation with p-Laplacian and memory terms. Math. Methods Appl. Sci. 35(4), 417–426 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Araújo, R.O., Ma, T.F., Qin, Y.: Long-time behavior of a quasilinear viscoelastic equation with past history. J. Differ. Equ. 254(10), 4066–4087 (2013)zbMATHCrossRefGoogle Scholar
  4. 4.
    Barreto, R., Lapa, E.C., Rivera, J.E.M.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cavalcanti, M.M., Domingos, V.N., Ferreira, J.: Existence and uniform decay for a non-linear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24(14), 1043–1053 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cavalcanti, M.M., Oquendo, H.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Cavalcanti, M.M., Cavalcanti, V.N.D., Ma, T.F.: Cavalcanti and T. F. Ma, Exponential decay of the viscoelastic Euler–Bernoulli equation with a nonlocal dissipation in general domains. Differ. Integr. Equ. 17, 495–510 (2004)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Cavalcanti, M.M., Cavalcanti, A.D.D., Lasiecka, I., Wang, X.: Existence and sharp decay rate estimates for a von Karman system with long memory. Nonlinear Anal. RWA 22, 289–306 (2015)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Rational Mech. Anal. 37, 297–308 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Fabrizio, M., Giorgi, C., Pata, V.: A new approach to equations with memory. Arch. Ration. Mech. Anal. 198, 189–232 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Giorgi, C., Rivera, J.E.M., Pata, V.: Global attractors for a semilinear hyperbolic equation in viscoelasticity. J. Math. Anal. Appl. 260(1), 83–99 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. Math. Methods Appl. Sci. 32(3), 346–358 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Han, X., Wang, M.: General decay of energy for a viscoelastic equation with nonlinear damping. J. Franklin Inst. 347(5), 806–817 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lagnese, J.E.: Asymptotic Energy Estimates for Kirchhoff Plates Subject to Weak Viscoelastic Damping. Control and Estimation of Distributed Parameter Systems (Vorau, 1988), pp. 211–236, Internat. Ser. Numer. Math., 91. Birkhäuser, Basel (1989)Google Scholar
  15. 15.
    Lagnese, J.E.: Boundary Stabilization of Thin Plates, SIAM Studies in Applied Mathematics, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1989)CrossRefGoogle Scholar
  16. 16.
    Lagnese, J., Lions, J.-L.: Modelling, Analysis and Control of Thin Plates, Recherches en Mathématiques Appliquées, vol. 6. Masson, Paris (1988)Google Scholar
  17. 17.
    Lasiecka, I., Messaoudi, S.A., Mustafa, M.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54(3), 031504 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Liu, W.: General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J. Math. Phys. 50(11), 113506 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Liu, W.: General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal. 73, 1890–1904 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, W., Sun, Y.: General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions. Z. Angew. Math. Phys. 65(1), 125–134 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69(8), 2589–2598 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Messaoudi, S.A., Tatar, N.-E.: Exponential decay for a quasilinear viscoelastic equation. Math. Nachr. 282, 1443–1450 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Messaoudi, S.A., Mustafa, M.I.: General stability result for viscoelastic wave equations. J. Math. Phys. 53(5), 053702 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Park, J.Y., Park, S.H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50, 083505 (2009)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pata, V.: Exponential stability in linear viscoelasticity. Quart. Appl. Math. 64(3), 499–513 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Pata, V.: Stability and exponential stability in linear viscoelasticity. Milan J. Math. 77, 333–360 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    Rivera, J.E.M., Salvatierra, A.P.: Asymptotic behaviour of the energy in partially viscoelastic materials. Quart. Appl. Math. 59(3), 557–578 (2001)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Rivera, J.E.M., Naso, M.G.: Asymptotic stability of semigroups associated with linear weak dissipative systems with memory. J. Math. Anal. Appl. 326(1), 691–707 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Silva, M.A.J., Ma, T.F.: On a viscoelastic plate equation with history setting and perturbation of p-Laplacian type. IMA J. Appl. Math. 78(6), 1130–1146 (2013)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Silva, M.A.J., Ma, T.F.: Long-time dynamics for a class of Kirchhoff models with memory. J. Math. Phys. 54(2), 021505 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Tatar, N.E.: Arbitrary decays in linear viscoelasticity. J. Math. Phys. 52(1), 013502 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Wu, S.T.: Arbitrary decays for a viscoelastic equation. Bound. Value Probl. 2011(28), 1–14 (2011)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • M. A. Jorge Silva
    • 1
    Email author
  • J. E. Muñoz Rivera
    • 2
    • 3
  • R. Racke
    • 4
  1. 1.Department of MathematicsState University of LondrinaLondrinaBrazil
  2. 2.National Laboratory of Scientific ComputationPetrópolisBrazil
  3. 3.Institute of MathematicsFederal University of Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Mathematics and StatisticsUniversity of KonstanzKonstanzGermany

Personalised recommendations