Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains
- 135 Downloads
Abstract
We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.
Keywords
Micropolar fluids Stackelberg–Nash strategies Hierarchic controlMathematics Subject Classification
35K20 93B05 76D55Notes
Acknowledgments
The author wants to express his gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article. The author also thanks Newton Santos for his comments on the manuscript.
References
- 1.Abergel, A., Teman, R.: On some control problem in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)Google Scholar
- 2.Araruna, F.D., Chaves-Silva, F.W., Rojas-Medar, M.A.: Exact controllability of Galerkin’s approximations of micropolar fluids. Proc. Am. Math. Soc. 138, 1361–1370 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
- 3.Araruna, F.D., Menezes, S.D., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids. Appl. Math. Optim. 70(3), 373–393 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
- 4.Belmiloudi, A.: Stabilization, Optimal and Robust Control-Theory and Applications in Biological and Physical Sciences. Springer, London (2008)zbMATHGoogle Scholar
- 5.Betts, J.: Practical Methods for Optimal Control using Nonlinear Programming. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
- 6.Blieger, L.: Real-Time PDE-Constraints Optimization. SIAM, Philadelphia (2007)Google Scholar
- 7.Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
- 8.Calmelet-Eluhu, C., Rosenhaus, V.: Symmetries and solution of a micropolar fluid flow through a cylinder. Acta Mech. 147, 59–72 (2001)zbMATHCrossRefGoogle Scholar
- 9.Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. 96(3), 343–356 (2002)zbMATHGoogle Scholar
- 10.Díaz, J.I., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control—Mathematical and Numerical Investigations, vol. 17–27. Springer, Berlin (2005)Google Scholar
- 11.Ekeland, I., Teman, R.: Analyse Convexe et problèmes Variationneles. Dunod, Gauthier-Villars, Paris (1974)Google Scholar
- 12.Eringen, A.C.: Micropolar theory of liquid crystals. In: Liquid Crystal and Ordered Fluids, pp. 443–471. Plenum, New York (1978)Google Scholar
- 13.Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1996)MathSciNetGoogle Scholar
- 14.Fernández-Cara, E., Guerrero, S.: Local exact controllability of micropolar fluids. J. Math. Fluid. Mech. 9, 419–453 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 15.Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Some controllability results for the N-dimensional Navier–Stokes and Boussinesq system with N\(-\)1 scalar controls. SIAM J. Control Opitim. 45(1), 146–173 (2006)zbMATHCrossRefGoogle Scholar
- 16.Fursikov, A.V.: Optimal control of systems. Theory and applications, Transl. Math. Monogr., vol. 187. American Mathematical Society, Providence (2000)Google Scholar
- 17.Gunsburger, M.D.: Perpespectives in Flown Control and Optimization. SIAM, Philadelphia (2003)Google Scholar
- 18.Jesus, I.P., Menezes, S.D.: On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids in moving domains. Comput. Appl. Math. (2014). doi: 10.1007/s40314-014-0126-y
- 19.Limaco, J., Clark, H.R., Medeiros, L.A.: Remarks on hierarchic control. J. Math. Anal. Appl. 359, 368–383 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Lions, J.-L.: Contrôle de Pareto de Systèmes Distribués. Le cas d’ évolution. C.R. Acad. Sci. Paris Ser I 302(11), 413–417 (1986)zbMATHMathSciNetGoogle Scholar
- 21.Lions, J.-L.: Contrôle de Pareto de Systèmes Distribués. Le cas stationaire. C.R. Acad. Sci. Paris Ser I 302(6), 223–227 (1986)zbMATHMathSciNetGoogle Scholar
- 22.Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4, 477–487 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
- 23.Lions, J.-L., Zuazua, E.: Exact boundary controllability of Galerkin’s approximations of Navier–Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXVI(4), 605–621 (1998)MathSciNetGoogle Scholar
- 24.Lukaszewicz, G.: Micropolar Fluids, Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhauser Boston Inc., Boston (1999)Google Scholar
- 25.Nash, J.: Noncooperative games. Ann. Math. 54, 286–295 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
- 26.Pareto, V.: Cours d’Économie Politique. Rouge, Laussane (1896)Google Scholar
- 27.Popel, A.S., Regirer, S.A., Usick, P.I.: A continuum model of blood flow. Biorheology 11, 427–437 (1974)Google Scholar
- 28.Ramos, A.M., Glowinski, R., Periaux, J.: Nash equilibria for the multiobjective control of linear differential equations. J. Optim. Theory Appl. 112(3), 457–498 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 29.Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach. J. Optim. Theory Appl. 112(3), 499–516 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 30.Ramos, A.M., Roubicek, T.: Nash equilibria in noncooperative Predator–Prey Games. Appl. Math. Optim. 56(2), 211–241 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 31.Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1969)Google Scholar
- 32.Simon, J.: Compact sets in the space \(L^{p}\left(0, T;B\right),\). Ann. Mat. Pura Appl. CXLVI(4), 65–96 (1987)Google Scholar
- 33.Stavre, R.: The control of the pressure for a micropolar fluid, dedicated to Eugen Soós. Z. Angew. Math. Phys. 53(6), 912–922 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 34.Von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Berlin (1934)Google Scholar
- 35.Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci. 28, 1507–1526 (2005)zbMATHMathSciNetCrossRefGoogle Scholar