Advertisement

Applied Mathematics & Optimization

, Volume 68, Issue 2, pp 157–179 | Cite as

Quantile Portfolio Optimization Under Risk Measure Constraints

  • Luis D. Cahuich
  • Daniel Hernández-Hernández
Article

Abstract

This paper analyzes the problem of optimal portfolio choice with budget and risk constraints. The problem is formulated in terms of quantile functions and the risk is quantified through a large family of coherent risk measures. The solution is obtained analyzing the problem without constraints using Lagrange multipliers, getting a unique solution to the optimization problem.

Keywords

Quantile function Portfolio optimization Risk quantification 

Notes

Acknowledgement

The authors are grateful to the reviewer for his careful reading of the original manuscript and his helpful suggestions to improve the paper.

The research of Daniel Hernández–Hernández was partially supported by Conacyt and the Fulbright Foundation.

References

  1. 1.
    Acerbi, C., Simonetti, P.: Portfolio optimization with spectral measures of risk (2002). arXiv:cond-mat/0203607v1
  2. 2.
    Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Basak, S., Shapiro, A.: Value-at-risk based risk management: optimal policies and asset prices. Rev. Financ. Stud. 14, 371–405 (2001) CrossRefGoogle Scholar
  4. 4.
    De Franco, C., Tankov, P.: Portfolio insurance under a risk-measure constraint. Insur. Math. Econ. 49, 361–370 (2011) CrossRefzbMATHGoogle Scholar
  5. 5.
    Gundel, A., Weber, S.: Utility maximization under a shortfall risk constraint. J. Math. Econ. 44, 1126–1151 (2005) MathSciNetCrossRefGoogle Scholar
  6. 6.
    He, X.D., Jin, H.Q., Zhou, X.Y.: Portfolio selection with law-invariant coherent risk measures. Working paper (2012) Google Scholar
  7. 7.
    He, X.D., Zhou, X.Y.: Portfolio choice via quantiles. Math. Finance 21, 203–231 (2011) MathSciNetzbMATHGoogle Scholar
  8. 8.
    He, X.D., Zhou, X.Y.: Hope, fear and aspirations. Working paper (2012) Google Scholar
  9. 9.
    Heath, D.: A continuous time version of Kulldorff’s result. Unpublished manuscript (1993) Google Scholar
  10. 10.
    Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou property. Adv. Math. Econ. 9, 49–71 (2006) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979) CrossRefzbMATHGoogle Scholar
  12. 12.
    Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Applications of Mathematics, vol. 39. Springer, Berlin (1998) zbMATHGoogle Scholar
  13. 13.
    Kulldorff, M.: Optimal control of favorable games with a time limit. SIAM J. Control Optim. 31, 52–69 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kusuoka, S.: On law invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001) MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lopes, L.L.: Between hope and fear: The psychology of risk. Adv. Exp. Soc. Psychol. 20, 255–295 (1997) CrossRefGoogle Scholar
  16. 16.
    Merton, R.C.: Lifetime portfolio selection under uncertainty: the continuous-time case. Rev. Econ. Stat. 51, 247–257 (1969) CrossRefGoogle Scholar
  17. 17.
    Prelec, D.: The probability weighting function. Econometrica 66, 497–527 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Rieger, M.O., Wang, M.: Cumulative prospect theory and the St. Petersburg paradox. Econ. Theory 28, 665–679 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Samuelson, P.A.: Lifetime portfolio selection by dynamic stochastic programming. Rev. Econ. Stat. 5, 239–246 (1969) CrossRefGoogle Scholar
  20. 20.
    Tsukahara, H.: One-parameter families of distortion risk measures. Math. Finance 19, 691–705 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Tversky, A., Fox, C.R.: Weighting risk and uncertainty. Psychol. Rev. 102, 269–283 (1995) CrossRefGoogle Scholar
  22. 22.
    Tversky, A., Kahneman, D.: Advances in prospect theory: cumulative representation of uncertainty. J. Risk Uncertain. 5, 297–323 (1992) CrossRefzbMATHGoogle Scholar
  23. 23.
    Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Luis D. Cahuich
    • 1
  • Daniel Hernández-Hernández
    • 2
  1. 1.BBVA BancomerMéxico CityMexico
  2. 2.Centro de Investigación en MatemáticasGuanajuatoMexico

Personalised recommendations