Applied Mathematics & Optimization

, Volume 65, Issue 2, pp 147–173 | Cite as

n-Person Dynamic Strategic Market Games

Open Access
Article

Abstract

We present a discrete n-person model of a dynamic strategic market game. We show that for some values of the discount factor the game possesses a stationary equilibrium where all the players make high bids. Within the class of all the high-bidding strategies we distinguish between two classes of more and less aggressive ones. We show that the set of discount factors for which these more aggressive strategies form equilibria shrinks as n goes to infinity. On the other hand, the analogous set for the less aggressive strategies grows to the whole interval (0,1) as n grows to infinity. Further we analyze the properties of the value function corresponding to these high-bidding equilibria. We also give some numerical examples contradicting some other properties that seem intuitive.

Keywords

Stochastic game Strategic market game n-person game Stationary equilibrium Finite strategy space 

References

  1. 1.
    Federgruen, A.: On n-person stochastic games with denumerable state space. Adv. Appl. Probab. 10, 452–471 (1978) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Geanakoplos, J., Karatzas, I., Shubik, M., Sudderth, W.D.: A strategic market game with active bankrupcy. J. Math. Econ. 34, 359–396 (2000) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Karatzas, I., Shubik, M., Sudderth, W.D.: Construction of stationary Markov equilibria in a strategic market game. Math. Oper. Res. 19(4), 975–1006 (1992) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Karatzas, I., Shubik, M., Sudderth, W.D.: A strategic market with secured lending. J. Math. Econ. 28, 207–247 (1997) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Pontiggia, L.: Topics in stochastic games. Ph.D. dissertation, University of Minnesota, United States (2004) Google Scholar
  7. 7.
    Ross, S.: Introduction to Stochastic Dynamic Programming. Academic Press, New York (1983) MATHGoogle Scholar
  8. 8.
    Schäl, M.: Conditions for optimality in dynamic programming and for the limit of n-stage optimal policies to be optimal. Z. Wahrscheinlichkeitstheor. Verw. Geb. 32, 179–196 (1975) MATHCrossRefGoogle Scholar
  9. 9.
    Secchi, P., Sudderth, W.D.: A two-person strategic market game. Quaderni di Dipartamento 83(6-98), Dipart. di Econ. Polit. e Met. Quant., Università di Pavia (1998) Google Scholar
  10. 10.
    Secchi, P., Sudderth, W.D.: A simple two-person stochastic game with money. In: Nowak, A.S., Szajowski, K. (eds.) Advances in Dynamic Games. Applications to Economics, Finance, Optimization, and Stochastic Control. Ann. of ISDG, vol. 7, pp. 39–66. Birkhäuser, Boston (2005) Google Scholar
  11. 11.
    Shubik, M., Whitt, W.: Fiat money in an economy with one nondurable good and no credit. A noncooperative sequential game. In: Blaquiere, A. (ed.) Topics in Differential Games, pp. 401–449. North-Holland, Amsterdam (1973) Google Scholar
  12. 12.
    Więcek, P.: Pure equilibria in a simple dynamic model of strategic market game. Math. Methods Oper. Res. 69, 59–79 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Więcek, P., Radzik, T.: On a continuous dynamic strategic market game. In: Petrosjan, L., Mazalov, V.V. (eds.) Game Theory and Applications, vol. 11, pp. 187–196. Nova Science Publishers, New York (2007) Google Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceWrocław University of TechnologyWrocławPoland

Personalised recommendations