Applied Mathematics & Optimization

, Volume 64, Issue 2, pp 257–271 | Cite as

Optimal Regularity and Long-Time Behavior of Solutions for the Westervelt Equation

  • Stefan Meyer
  • Mathias WilkeEmail author


We investigate an initial-boundary value problem for the quasilinear Westervelt equation which models the propagation of sound in fluidic media. We prove that, if the initial data are sufficiently small and regular, then there exists a unique global solution with optimal L p -regularity. We show furthermore that the solution converges to zero at an exponential rate as time tends to infinity. Our techniques are based on maximal L p -regularity for abstract quasilinear parabolic equations.


Westervelt equation Optimal regularity Quasilinear parabolic system Exponential stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Elsevier/Academic Press, Amsterdam (2003) zbMATHGoogle Scholar
  2. 2.
    Amann, H.: Linear and Quasilinear Parabolic Problems. Vol. I: Abstract Linear Theory. Monographs in Mathematics, vol. 89. Birkhäuser, Boston (1995) Google Scholar
  3. 3.
    Clason, C., Kaltenbacher, B., Veljović, S.: Boundary optimal control of the Westervelt and the Kuznetsov equations. J. Math. Anal. Appl. 356(2), 738–751 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Denk, R., Hieber, M., Prüss, J.: \(\mathcal{R}\)-boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc., vol. 166. Springer, Berlin (2003). viii+114 Google Scholar
  5. 5.
    Denk, R., Hieber, M., Prüss, J.: Optimal l p- l q-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z. 257(1), 193–224 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dore, G.: L p regularity for abstract differential equations. In: Functional Analysis and Related Topics, 1991 (Kyoto). Lecture Notes in Math, vol. 1540, pp. 25–38. Springer, Berlin (1993) CrossRefGoogle Scholar
  7. 7.
    Grisvard, P.: Équations différentielles abstraites. Ann. Sci. École Norm. Sup. 2, 311–395 (1969) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hamilton, M.F., Blackstock, D.T.: Nonlinear Acoustics. Academic Press, New York (1998) Google Scholar
  9. 9.
    Hieber, M., Prüss, J.: Heat kernels and maximal L p-L q estimates for parabolic evolution equations. Commun. Partial Differ. Equ. 22(9–10), 1647–1669 (1997) zbMATHGoogle Scholar
  10. 10.
    Kaltenbacher, B.: Boundary observability and stabilization for Westervelt type wave equations without interior damping. Appl. Math. Optim. 62(3), 381–410 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kaltenbacher, B., Lasiecka, I.: Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst. Ser. S 2(3), 503–523 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Kaltenbacher, M.: Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin (2007) Google Scholar
  13. 13.
    Kunstmann, P.C., Weis, L.: Maximal L p-regularity for parabolic equations, Fourier multiplier theorems and H -functional calculus. In: Functional Analytic Methods for Evolution Equations. Lecture Notes in Math., vol. 1855, pp. 65–311. Springer, Berlin (2004) Google Scholar
  14. 14.
    Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs, vol. 23, American Mathematical Society (AMS), Providence (1968). XI, 648 p. Translated from the Russian by S. Smith zbMATHGoogle Scholar
  15. 15.
    Lerch, R., Sessler, G., Wolf, D.: Technische Akustik: Grundlagen und Anwendungen. Springer, Berlin (2008) Google Scholar
  16. 16.
    Prüss, J.: Maximal regularity for evolution equations in L p-spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2003). 2002 Google Scholar
  17. 17.
    Triebel, H.: Theory of Function Spaces. Monographs in Mathematics, vol. 78. Birkhäuser, Basel (1983) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Naturwissenschaftliche Fakultät II, Institut für MathematikMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany

Personalised recommendations