Advertisement

Applied Mathematics & Optimization

, Volume 63, Issue 2, pp 277–308 | Cite as

Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation

  • Jaroslav Haslinger
  • Jan StebelEmail author
Article
  • 94 Downloads

Abstract

We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.

Keywords

Optimal shape design Paper machine headbox Incompressible non-Newtonian fluid Algebraic turbulence model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier, New York (1972) zbMATHGoogle Scholar
  2. 2.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991) zbMATHGoogle Scholar
  3. 3.
    Bulíček, M., Haslinger, J., Málek, J., Stebel, J.: Shape optimization for Navier–Stokes equations with algebraic turbulence model: existence analysis. Appl. Math. Optim. 60(2), 185–212 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Byrd, R.H., Hribar, M.E., Nocedal, J.: An interior point algorithm for large-scale nonlinear programming. SIAM J. Optim. 9(4), 877–900 (1999) (electronic). Dedicated to John E. Dennis, Jr., on his 60th birthday zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Byrd, R.H., Gould, N.I.M., Nocedal, J., Waltz, R.A.: An algorithm for nonlinear optimization using linear programming and equality constrained subproblems. Math. Program., Ser. B 100(1), 27–48 (2004) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Vol. I. Springer Tracts in Natural Philosophy, vol. 38. Springer, New York (1994) Google Scholar
  8. 8.
    Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002) (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Girault, V., Raviart, P.: Finite Element Approximation of the Navier-Stokes Equations. Springer, Berlin (1979) zbMATHCrossRefGoogle Scholar
  10. 10.
    Griewank, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2000). Zbl. 0958.65028 zbMATHGoogle Scholar
  11. 11.
    Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Advances in Design and Control, vol. 5. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003) zbMATHGoogle Scholar
  12. 12.
    Hämäläinen, J.: Mathematical modelling and simulation of fluid flows in headbox of paper machines. PhD thesis, University of Jyväskylä (1993) Google Scholar
  13. 13.
    Hämäläinen, J., Mäkinen, R.A.E., Tarvainen, P.: Optimal design of paper machine headboxes. Int. J. Numer. Methods. Fluids 34, 685–700 (2000) zbMATHCrossRefGoogle Scholar
  14. 14.
    Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization. Advances in Design and Control, vol. 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2003) zbMATHGoogle Scholar
  15. 15.
    Haslinger, J., Málek, J., Stebel, J.: Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis. Control Cybern. 34(1), 283–303 (2005) zbMATHGoogle Scholar
  16. 16.
    Hassanizadeh, S.M., Gray, W.G.: High velocity flow in porous media. Transp. Porous Media 2, 521–531 (1987) CrossRefGoogle Scholar
  17. 17.
    Ladyzhenskaya, O.: Modification of the Navier-Stokes equations for large velocity gradients. Semin. Math. V.A. Steklov Math. Inst., Leningr. 7, 57–69 (1968) Google Scholar
  18. 18.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Mathematics and its Applications, vol. 2. Gordon and Breach, New York (1969). Second English edition, revised and enlarged. Translated from the Russian by Richard A. Silverman and John Chu zbMATHGoogle Scholar
  19. 19.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969) zbMATHGoogle Scholar
  20. 20.
    Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and measure-valued solutions to evolutionary PDEs. Applied Mathematics and Mathematical Computation, vol. 13. Chapman & Hall, London (1996) zbMATHGoogle Scholar
  21. 21.
    Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3–4), 245–296 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Prandtl, L.: Bericht über Untersuchugen zur ausgebildeten Turbulenz. Z. Angew. Math. Mech. 5(2), 136–139 (1925) zbMATHGoogle Scholar
  23. 23.
    Sokołowski, J., Zolésio, J.-P.: Shape sensitivity analysis. In: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992). Google Scholar
  24. 24.
    Stebel, J.: Shape optimization for Navier-Stokes equations with viscosity. PhD thesis, Charles University in Prague, Faculty of Mathematics and Physics (2007). http://www.math.cas.cz/~stebel/dis.pdf
  25. 25.
    Stebel, J., Mäkinen, R., Toivanen, J.: Optimal shape design in a fibre orientation model. Appl. Math. 52(5), 391–405 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Stenberg, R.: On some three-dimensional finite elements for incompressible media. Comput. Methods Appl. Mech. Eng. 63(3), 261–269 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Waltz, R.A., Morales, J.L., Nocedal, J., Orban, D.: An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math. Program., Ser. A 107(3), 391–408 (2006) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Numerical Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPraha 8Czech Republic
  2. 2.Institute of MathematicsAcademy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations