Applied Mathematics and Optimization

, Volume 62, Issue 1, pp 47–80 | Cite as

Viscosity Solutions for a System of Integro-PDEs and Connections to Optimal Switching and Control of Jump-Diffusion Processes

  • Imran H. BiswasEmail author
  • Espen R. Jakobsen
  • Kenneth H. Karlsen


We develop a viscosity solution theory for a system of nonlinear degenerate parabolic integro-partial differential equations (IPDEs) related to stochastic optimal switching and control problems or stochastic games. In the case of stochastic optimal switching and control, we prove via dynamic programming methods that the value function is a viscosity solution of the IPDEs. In our setting the value functions or the solutions of the IPDEs are not smooth, so classical verification theorems do not apply.

Integro-partial differential equations Dynamic programming method Viscosity solutions Optimal stochastic control and switching Lévy processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 13(3), 293–317 (1996) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Amadori, A.L.: The obstacle problem for nonlinear integro-differential operators arising in option pricing. Quaderno IAC Q21-000 (2000) Google Scholar
  3. 3.
    Amadori, A.L.: Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach. Differ. Integr. Equ. 16(7), 787–811 (2003) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. In: Systems & Control: Foundations & Applications. Birkhäuser Boston, Cambridge (1997) Google Scholar
  5. 5.
    Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Barles, G., Chasseigne, E., Imbert, C.: On the Dirichlet problem for second-order elliptic integro-differential equations. Indiana Univ. Math. J. 57(1), 213–246 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions’ theory revisited. Ann. Inst. Henri Poincaré Anal. Non Linéaire 25(3), 567–585 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Barles, G., Jakobsen, E.R.: On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations. M2AN Math. Model. Numer. Anal. 36(1), 33–54 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Barles, G., Jakobsen, E.R.: Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations. SIAM J. Numer. Anal. 43(2), 540–558 (2005) (electronic) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Barles, G., Jakobsen, E.R.: Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations. Math. Comput. 76(240), 1861–1893 (2007) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Basu, A., Ghosh, M.K.: Stochastic differential games with multiple modes and applications to portfolio optimization. Stoch. Anal. Appl. 25, 845–867 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Benth, F.E., Karlsen, K.H., Reikvam, K.: Optimal portfolio selection with consumption and nonlinear integrodifferential equations with gradient constraint: a viscosity solution approach. Finance Stoch. 5, 275–303 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Benth, F.E., Karlsen, K.H., Reikvam, K.: Portfolio optimization in a Lévy market with intertemporal substitution and transaction costs. Stoch. Stoch. Rep. 74(3–4), 517–569 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley Series in Probability and Statistics. Wiley, New York (1999) zbMATHGoogle Scholar
  15. 15.
    Biswas, I.H., Jakobsen, E.R., Karlsen, K.H.: Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE (2009, submitted) Google Scholar
  16. 16.
    Bonnans, J.F., Baroso, S., Zidani, H.: Error estimates for a stochastic impulse control problem. Appl. Math. Optim. 55(3), 327–357 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Caffarelli, L., Silvestre, L.: Regularity theory for fully nonlinear integro-differential equations. Commun. Pure Appl. Math. 62(5), 597–638 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Caffarelli, L., Souganidis, P.E.: A rate of convergence for monotone finite difference approximations to fully nonlinear, uniformly elliptic PDEs. Commun. Pure Appl. Math. 61(1), 1–17 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Capuzzo Dolcetta, I., Evans, L.C.: Optimal switching for ordinary differential equations. SIAM J. Control. Optim. 22, 365–389 (1984) MathSciNetGoogle Scholar
  20. 20.
    Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall/CRC, Boca Raton (2004) Google Scholar
  21. 21.
    Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Evans, L.C., Friedman, A.: Optimal stochastic switching and the Dirichlet problem for the Bellman equation. Trans. Am. Math. Soc. 253, 365–389 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Fleming, W.H., Sethi, S.P., Soner, H.M.: An optimal stochastic production planning with randomly fluctuating demand. SIAM J. Control. Optim. 25, 1494–1502 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993) zbMATHGoogle Scholar
  25. 25.
    Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two player, zero-sum stochastic differential Games. Indiana Univ. Math. J. 38(2), 293–314 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Ishii, H.: Perron’s method for Hamilton-Jacobi equations. Duke Math. J. 55, 369–384 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Ishii, H., Koike, S.: Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games. Funkc. Ekvacioj. 34(1), 143–155 (1991) zbMATHMathSciNetGoogle Scholar
  28. 28.
    Ishii, H., Koike, S.: Viscosity solutions for monotone systems of second-order elliptic PDEs. Commun. Partial Differ. Equ. 16, 1095–1128 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Ishikawa, Y.: Optimal control problem associated with jump processes. Appl. Math. Optim. 50(1), 21–65 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Jakobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations. Electron. J. Differ. Equ. 39, 1–10 (2002) MathSciNetGoogle Scholar
  31. 31.
    Jakobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212(2), 278–318 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Jakobsen, E.R., Karlsen, K.H.: A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. NoDEA Nonlinear Differ. Equ. Appl. 13(2), 137–165 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations. Algebra Anal. 9(3), 245–256 (1997) Google Scholar
  34. 34.
    Krylov, N.V.: On the rate of convergence of finite-difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Relat. Fields 117(1), 1–16 (2000) zbMATHCrossRefGoogle Scholar
  35. 35.
    Krylov, N.V.: The rate of convergence of finite-difference approximations for Bellman equations with Lipschitz coefficients. Appl. Math. Optim. 52(3), 365–399 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lenhart, S.M., Liao, Y.C.: Switching control of piecewise-deterministic processes. J. Optim. Theory Appl. 59(1), 99–115 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Berlin (2005) Google Scholar
  38. 38.
    Pham, H.: Optimal stopping of controlled jump diffusion processes: a viscosity solution approach. J. Math. Syst. Estim. Control 8(1), 27 (1998) (electronic) MathSciNetGoogle Scholar
  39. 39.
    Sato, K.I.: Levy Processes and Infinite Divisibility. Cambridge University Press, Cambridge (2000) Google Scholar
  40. 40.
    Sayah, A.: Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. I. Unicité des solutions de viscosité. Commun. Partial Differ. Equ. 16(6–7), 1057–1074 (1991) zbMATHGoogle Scholar
  41. 41.
    Sayah, A.: Équations d’Hamilton-Jacobi du premier ordre avec termes intégro-différentiels. II. Existence de solutions de viscosité. Commun. Partial Differ. Equ. 16(6–7), 1075–1093 (1991) zbMATHGoogle Scholar
  42. 42.
    Sharifnia, A.: Production control of a manufacturing systems with multiple machine states. IEEE Trans. Automat. Control AC-33, 620–625 (1988) CrossRefGoogle Scholar
  43. 43.
    Stojanovic, S., Yong, J.M.: Optimal switching for partial differential equations. I. J. Math. Anal. Appl. 138(2), 418–438 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Stojanovic, S., Yong, J.M.: Optimal switching for partial differential equations. II. J. Math. Anal. Appl. 138(2), 439–460 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Tang, S., Hou, S.: Switching games of stochastic differential systems. SIAM J. Control Optim. 46(3), 900–929 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Tang, S., Yong, J.M.: Finite horizon stochastic optimal switching and impulse controls with viscosity solution approach. Stoch. Stoch. Rep. 45, 145–176 (1993) zbMATHMathSciNetGoogle Scholar
  47. 47.
    Yong, J.M.: Systems governed by ordinary differential equations with continuous, switching and impulse controls. Appl. Math. Optim. 20(3), 223–235 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Yamada, N.: Viscosity solutions for a system of elliptic inequalities with bilateral obstacles. Funkc. Ekvacioj. 30, 417–425 (1987) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Imran H. Biswas
    • 1
    Email author
  • Espen R. Jakobsen
    • 2
  • Kenneth H. Karlsen
    • 3
  1. 1.Seminar für Angewandte Mathematik, D-MATHETH-ZurichZurichSwitzerland
  2. 2.Norwegian University of Science and TechnologyTrondheimNorway
  3. 3.Centre of Mathematics for ApplicationsUniversity of OsloOsloNorway

Personalised recommendations