Applied Mathematics and Optimization

, Volume 58, Issue 3, pp 393–410

Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints

Article

Abstract

We study Hamilton-Jacobi equations in a bounded domain with the state constraint boundary condition. We establish a general convergence result for viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with the state constraint boundary condition to asymptotic solutions as time goes to infinity.

Keywords

Hamilton-Jacobi equations Large-time behavior State constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barles, G.: Asymptotic behavior of viscosity solutions of first Hamilton-Jacobi equations. Ric. Mat. 34(2), 227–260 (1985) MATHMathSciNetGoogle Scholar
  2. 2.
    Barron, E.N., Jensen, R.: Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians. Commun. Partial Differ. Equ. 15(12), 1713–1742 (1990) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barles, G., Roquejoffre, J.-M.: Ergodic type problems and large time behaviour of unbounded solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 31(7–9), 1209–1225 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Barles, G., Souganidis, P.E.: On the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 31(4), 925–939 (2000) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cannarsa, P., Gozzi, F., Soner, H.M.: A boundary value problem for Hamilton-Jacobi equations in Hilbert spaces. Appl. Math. Optim. 24(2), 197–220 (1991) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cannarsa, P., Sinestrari, C.: Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Progress in Nonlinear Differential Equations and Their Applications, vol. 58. Birkhäuser, Boston (2004) MATHGoogle Scholar
  7. 7.
    Capuzzo-Dolcetta, I., Lions, P.-L.: Hamilton-Jacobi equations with state constraints. Trans. Am. Math. Soc. 318(2), 643–683 (1990) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1983) MATHGoogle Scholar
  9. 9.
    Davini, A., Siconolfi, A.: A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 38(2), 478–502 (2006) CrossRefMathSciNetGoogle Scholar
  10. 10.
    Fathi, A.: Sur la convergence du semi-groupe de Lax-Oleinik. C. R. Acad. Sci. Paris Sér. I Math. 327(3), 267–270 (1998) MATHMathSciNetGoogle Scholar
  11. 11.
    Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge University Press, Cambridge (2008, to appear) Google Scholar
  12. 12.
    Fathi, A., Siconolfi, A.: PDE aspects of Aubry-Mather theory for quasiconvex Hamiltonians. Calc. Var. Partial Differ. Equ. 22(2), 185–228 (2005) MathSciNetGoogle Scholar
  13. 13.
    Frankowska, H., Rampazzo, F.: Filippov’s and Filippov-Ważewski’s theorems on closed domains. J. Differ. Equ. 161(2), 449–478 (2000) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Fujita, Y., Ishii, H., Loreti, P.: Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space. Indiana Univ. Math. J. 55(5), 1671–1700 (2006) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ichihara, N., Ishii, H.: Asymptotic solutions of Hamilton-Jacobi equations with semi-periodic Hamiltonians. Commun. Partial Differ. Equ. (2008, to appear) Google Scholar
  16. 16.
    Ishii, H.: Asymptotic solutions for large time of Hamilton-Jacobi equations in Euclidean n space, Ann. Inst. Henri Poincaré Anal. Non Linéaire (2008, to appear) Google Scholar
  17. 17.
    Ishii, H., Mitake, H.: Representation formulas for solutions of Hamilton-Jacobi equations with convex Hamiltonians. Indiana Univ. Math. J. 56(5), 2159–2184 (2007) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kružkov, S.N.: Generalized solutions of nonlinear equations of the first order with several independent variables. II. Mat. Sb. (N.S.) 72(114), 108–134 (1967) (in Russian) MathSciNetGoogle Scholar
  19. 19.
    Lions, P.-L.: Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics, vol. 69. Pitman, London (1982) MATHGoogle Scholar
  20. 20.
    Loreti, P., Tessitore, M.E.: Approximation and regularity results on constrained viscosity solutions of Hamilton-Jacobi-Bellman equations. J. Math. Syst. Estim. Control 4(4), 467–483 (1994) MATHMathSciNetGoogle Scholar
  21. 21.
    Namah, G., Roquejoffre, J.-M.: Remarks on the long time behaviour of the solutions of Hamilton-Jacobi equations. Commun. Partial Differ. Equ. 24(5–6), 883–893 (1999) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Roquejoffre, J.-M.: Convergence to steady states or periodic solutions in a class of Hamilton-Jacobi equations. J. Math. Pures Appl. 80(1), 85–104 (2001) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Soner, H.M.: Optimal control with state-space constraint. I. J. SIAM Control Optim. 24(3), 552–561 (1986) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Veliov, V.M.: Lipschitz continuity of the value function in optimal control. J. Optim. Theory Appl. 94(2), 335–363 (1997) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Pure and Applied MathematicsWaseda UniversityTokyoJapan

Personalised recommendations