Advertisement

A Penalization Approach for Tomographic Reconstruction of Binary Axially Symmetric Objects

  • R. Abraham
  • M. Bergounioux
  • E. Trélat
Article

Abstract

We propose a variational method for tomographic reconstruction of blurred and noised binary images based on a penalization process of a minimization problem settled in the space of bounded variation functions. We prove existence and/or uniqueness results and derive a penalized optimality system. Numerical simulations are provided to demonstrate the relevance of the approach.

Keywords

Tomography Optimization Penalization 

References

  1. 1.
    Abraham, I., Abraham, R., Bergounioux, M.: An active curve approach for tomographic reconstruction of binary axially symmetric objects. Preprint HAL csd-00084855 (2006) Google Scholar
  2. 2.
    Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10(6), 1217–1229 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140. Academic Press, San Diego (2003) zbMATHGoogle Scholar
  4. 4.
    Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Oxford University Press, Oxford (2000) zbMATHGoogle Scholar
  5. 5.
    Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing, Partial Differential Equations and the Calculus of Variations. Applied Mathematical Sciences, vol. 147. Springer, Berlin (2006) zbMATHGoogle Scholar
  6. 6.
    Bates, R.H.T., Garden, K.L., Peters, T.M.: Overview of computerized tomography with emphasis on future developments. Proc. IEEE 71(3), 356–297 (1983) CrossRefGoogle Scholar
  7. 7.
    Bergounioux, M., Mignot, F.: Control of Variational Inequalities and Lagrange Multipliers. ESAIM, COCV 5, 45–70 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bruandet, J.P., Peyrin, F., Dinten, J.M., Barlaud, M.: 3D tomographic reconstruction of binary images from cone-beam projections: a fast level-set approach. In: IEEE International Symposium on Biomedical Imaging, pp. 677–680 (2002) Google Scholar
  9. 9.
    Casas, E., Kunisch, K., Pola, C.: Regularization by functions of bounded variation and applications to image enhancement. Appl. Math. Optim. 40, 229–257 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004) MathSciNetGoogle Scholar
  11. 11.
    Dinten, J.-M.: Tomographie à partir d’un nombre limité de projections: régularisation par champs Markovien, Ph.D. thesis, Université Paris-Sud (1990) Google Scholar
  12. 12.
    Dusaussoy, N.J.: Image reconstruction from projections. In: SPIE’s International Symposium on Optics, Imaging and Instrumentation, San Diego (1994) Google Scholar
  13. 13.
    Feng, H., Karl, W., Castanon, D.: A curve evolution approach to object-based tomographic reconstruction. IEEE Trans. Image Proccess. 12, 44–57 (2003) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hanson, K.: Tomographic reconstruction of axially symmetric objects from a single radiograph. High Speed Photogr. 491 (1984) Google Scholar
  15. 15.
    Herman, G.: Image Reconstruction From Projections: The Fundamentals of Computerized Tomography. Academic Press, San Diego (1980) zbMATHGoogle Scholar
  16. 16.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988) zbMATHGoogle Scholar
  17. 17.
    Lagrange, J.-M.: Reconstruction tomographique à partir d’un petit nombre de vues. Ph.D. thesis, ENS Cachan (1998) Google Scholar
  18. 18.
    Magnor, M., Kindlmann, G., Hansen, C., Duric, N.: Reconstruction and visualization of planetary nebulae. IEEE Trans. Vis. Comput. Graph. 11(5), 485–496 (2005) CrossRefGoogle Scholar
  19. 19.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problem. Commun. Pure Appl. Math. 42, 577–685 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sethian, J.A.: Theory, algorithms and applications of level set methods for propagating interfaces. In: Iserles, A. (ed.) Acta Numerica, vol. 5, pp. 309–395. Cambridge University Press, Cambridge (1996) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.UFR Sciences, Math., Labo. MAPMO, UMR 6628Université d’OrléansOrléans cedex 2France

Personalised recommendations