Skip to main content

Advertisement

Log in

The Broad-Scale Analysis of Metals, Trace Elements, Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Wetlands Along an Urban Gradient, and the Use of a High Trophic Snake as a Bioindicator

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Wetlands and their biodiversity are constantly threatened by contaminant pollution from urbanisation. Despite evidence suggesting that snakes are good bioindicators of environmental health, the bioaccumulation of contaminants in reptiles is poorly researched in Australia. We conducted the first broad-scale analysis of 17 metals and trace elements, 21 organochlorine pesticides, and 14 polycyclic aromatic hydrocarbons in the sediments (4 samples per site, December 2018) from four wetlands along an urban gradient in Perth, Western Australia, and from the livers (5 livers per site, February–April 2019) of western tiger snakes Notechis scutatus occidentalis captured at those sites. All 17 metals and trace elements were detected in the sediments of wetlands as well as 16 in the livers of tiger snakes. Arsenic, Cu, Hg, Pb, Se, and Zn were at concentrations exceeding government trigger values in at least one sediment sample. Two organochlorine pesticides and six of seven polycyclic aromatic hydrocarbons were detected in the sediments of a single wetland, all exceeding government trigger values, but were not detected in tiger snakes. Metals and trace elements were generally in higher concentration in sediments and snake livers from more heavily urbanised wetlands. The least urbanised site had some higher concentrations of metals and trace elements, possibly due to agriculture contaminated groundwater. Concentrations of nine metals and trace elements in snake livers were statistically different between sites. Arsenic, Cd, Co, Hg, Mo, Sb, and Se near paralleled the pattern of contamination measured in the wetland sediments; this supports the use of high trophic wetland snakes, such as tiger snakes, as bioindicators of wetland contamination. Contamination sources and impacts on these wetland ecosystems and tiger snakes are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht J, Abalos M, Rice TM (2007) Heavy metal levels in ribbon snakes (Thamnophis sauritus) and anuran larvae from the Mobile-Tensaw River Delta, Alabama, USA. Arch Environ Contam Toxicol 53:647–654. https://doi.org/10.1007/s00244-006-0175-3

    Article  CAS  Google Scholar 

  • Al-Maarofi SS, Alhello AZAR, Fawzi NA-M, Douabul AAZ, Al-Saad HT (2013) Desiccation versus re-flooding: heavy metals mobilization—part 1. J Environ Protect 4:27

    Google Scholar 

  • Alonso A, De Lange HJ, Peeters ET (2009) Development of a feeding behavioural bioassay using the freshwater amphipod Gammarus pulex and the Multispecies Freshwater. Biomonitor Chemosphere 75:341–346. https://doi.org/10.1016/j.chemosphere.2008.12.031

    Article  CAS  Google Scholar 

  • ANZECC and ARMCANZ (2000) Australian and New Zealand guidelines for fresh and marine water quality. Australia and New Zealand Environment and Conservation Council & Agriculture and Resource Management, Council of Australia and New Zealand

  • APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Environment Federation, Washington, DC

    Google Scholar 

  • Appleyard SJ, Angeloni J, Watkins R (2006) Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia. Appl Geochem 21:83–97. https://doi.org/10.1016/j.apgeochem.2005.09.008

    Article  CAS  Google Scholar 

  • Arnold TN, Oldham CE (1997) Trace-element contamination of a shallow wetland in Western Australia. Mar Freshw Res 48:531–539. https://doi.org/10.1071/Mf96088

    Article  CAS  Google Scholar 

  • Aubret F, Bonnet X, Maumelat S, Bradshaw D, Schwaner T (2004) Diet divergence, jaw size and scale counts in two neighbouring populations of tiger snakes (Notechis scutatus). Amphib Reptilia 25:9–17

    Google Scholar 

  • Aubret F, Burghardt GM, Maumelat S, Bonnet X, Bradshaw D (2006) Feeding preferences in 2 disjunct populations of tiger snakes, Notechis scutatus (Elapidae). Behav Ecol 17:716–725. https://doi.org/10.1093/beheco/arl004

    Article  Google Scholar 

  • Bai J, Lu Q, Zhao Q, Wang J, Gao Z, Zhang G (2015) Organochlorine pesticides (OCPs) in wetland soils under different land uses along a 100-year chronosequence of reclamation in a Chinese estuary. Sci Rep 5:17624. https://doi.org/10.1038/srep17624

    Article  CAS  Google Scholar 

  • Ball A, Truskewycz A (2013) Polyaromatic hydrocarbon exposure: an ecological impact ambiguity. Environ Sci Pollut Res Int 20:4311–4326. https://doi.org/10.1007/s11356-013-1620-2

    Article  CAS  Google Scholar 

  • Bazar M, Holtzman D, Adair B, Gresens S (2002) Effects of dietary methylmercury in juvenile corn snakes (Elaphe guttata). In: Abstracts, SETAC 23rd annual meeting, Salt Lake City, Utah, November, pp 16–20

  • Beck A (1956) The copper content of the liver and blood of some vertebrates. Aust J Zool 4:1–18

    CAS  Google Scholar 

  • Best SM (1973) Some organochlorine pesticide residues in wildlife of the Northern Territory, Australia, 1970–1971. Aust J Biol Sci 26:1161–1170

    CAS  Google Scholar 

  • Brasfield SM, Bradham K, Wells JB, Talent LG, Lanno RP, Janz DM (2004) Development of a terrestrial vertebrate model for assessing bioavailability of cadmium in the fence lizard (Sceloporus undulatus) and in vivo effects on hatchling size and thyroid function. Chemosphere 54:1643–1651

    CAS  Google Scholar 

  • Brown JS, Sutula M, Stransky C, Rudolph J, Byron E (2010) Sediment contaminant chemistry and toxicity of freshwater urban wetlands in southern California 1. JAWRA J Am Water Resour Assoc 46:367–385

    CAS  Google Scholar 

  • Bruhl CA, Pieper S, Weber B (2011) Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ Toxicol Chem 30:2465–2472. https://doi.org/10.1002/etc.650

    Article  CAS  Google Scholar 

  • Burger J et al (2007) Metal levels in blood, muscle and liver of water snakes (Nerodia spp.) from New Jersey, Tennessee and South Carolina. Sci Total Environ 373:556–563. https://doi.org/10.1016/j.scitotenv.2006.06.018

    Article  CAS  Google Scholar 

  • Burger J, Gochfeld M, Jeitner C, Zappalorti R, Pittfield T, DeVito E (2017) Arsenic, cadmium, chromium, lead, mercury and selenium concentrations in pine snakes (Pituophis melanoleucus) from the New Jersey Pine Barrens. Arch Environ Contam Toxicol 72:586–595. https://doi.org/10.1007/s00244-017-0398-5

    Article  CAS  Google Scholar 

  • Burkett D (2005) Nutrient contribution to hyper-eutrophic wetlands in Perth. Deakin University, Western Australia

    Google Scholar 

  • Butler H, Malone B, Clemann N (2005) The effects of translocation on the spatial ecology of tiger snakes (Notechis scutatus) in a suburban landscape. Wildl Res 32:165–171. https://doi.org/10.1071/Wr04020

    Article  Google Scholar 

  • Campbell KR, Campbell TS (2001) The accumulation and effects of environmental contaminants on snakes: a review. Environ Monit Assess 70:253–301. https://doi.org/10.1023/a:1010731409732

    Article  CAS  Google Scholar 

  • Campbell KR, Campbell TS, Burger J (2005) Heavy metal concentrations in northern water snakes (Nerodia sipedon) from East Fork Poplar Creek and the Little River, East Tennessee, USA. Arch Environ Contam Toxicol 49:239–248. https://doi.org/10.1007/s00244-004-0200-3

    Article  CAS  Google Scholar 

  • Chadwick MA, Dobberfuhl DR, Benke AC, Huryn AD, Suberkropp K, Thiele JE (2006) Urbanization affects stream ecosystem function by altering hydrology, chemistry, and biotic richness. Ecol Appl 16:1796–1807

    Google Scholar 

  • Chin SY, Willson JD, Cristol DA, Drewett DV, Hopkins WA (2013) Altered behavior of neonatal northern watersnakes (Nerodia sipedon) exposed to maternally transferred mercury. Environ Pollut 176:144–150. https://doi.org/10.1016/j.envpol.2013.01.030

    Article  CAS  Google Scholar 

  • City of Cockburn (2015) Integrated midge control strategy: Version 5. City of Cockburn, Perth

    Google Scholar 

  • Clarke K, Davis J, Murray F (1990) Herdsman Lake water quality study. Murdoch University, Perth

    Google Scholar 

  • Congdon R (1986) Nutrient loading and phytoplankton blooms in Lake Joondalup, Wanneroo, Western Australia. Department of Conservation and Environment, Perth

    Google Scholar 

  • Cooper CM (1993) Biological effects of agriculturally derived surface water pollutants on aquatic systems—a review. J Environ Qual 22:402–408. https://doi.org/10.2134/jeq1993.00472425002200030003x

    Article  CAS  Google Scholar 

  • Davis JA, Froend R (1999) Loss and degradation of wetlands in southwestern Australia: underlying causes, consequences and solutions. Wetlands Ecol Manag 7:13–23

    Google Scholar 

  • Davis JA, Garland M (1986) Herdsman lake pesticide study. Department of Conservation and Land Management, Perth

    Google Scholar 

  • Davis JA, Rosich RS, Bradley JS, Growns JE, Schmidt LG, Cheal F (1993) Wetland classification on the basis of water quality and invertebrate community data. Wetlands of the Swan Coastal Plain vol 6. Water Authority of Western Australia and Environmental Protection Authority, Perth

  • Day RD, Segars AL, Arendt MD, Lee AM, Peden-Adams MM (2007) Relationship of blood mercury levels to health parameters in the loggerhead sea turtle (Caretta caretta). Environ Health Perspect 115:1421–1428. https://doi.org/10.1289/ehp.9918

    Article  CAS  Google Scholar 

  • DEH (2004) National chemical reference guide—standards in the Australian environment. Department of Environment and Heritage, Australian Government, Canberra

    Google Scholar 

  • Department of Water GoWA (2009) A snapshot of contaminants in drains of Perth’s industrial areas: Industrial contaminants in stormwater of Herdsman Lake, Bayswater Drain, Bickley Brook and Bibra Lake between October 2007 and January 2008

  • Department of Water GoWA (2011) Perth shallow groundwater systems investigation: Loch McNess. Department of Water GoWA, Perth

    Google Scholar 

  • Drewett DV, Willson JD, Cristol DA, Chin SY, Hopkins WA (2013) Inter- and intraspecific variation in mercury bioaccumulation by snakes inhabiting a contaminated river floodplain. Environ Toxicol Chem 32:1178–1186. https://doi.org/10.1002/etc.2157

    Article  CAS  Google Scholar 

  • Ehrenfeld JG (2004) The expression of multiple functions in urban forested wetlands. Wetlands 24:719–733. https://doi.org/10.1672/0277-5212(2004)024%5b0719:teomfi%5d2.0.co;2

    Article  Google Scholar 

  • ESRI (1983) Herdsman industrial Estate Western Australia. Phase 1. Environmental Monitoring Report September 1982 to June 1983. ESRI Australia Pty. Ltd., Perth

  • Evans DW, Irwin SWB, Fitzpatrick S (2001) The effect of digenean (Platyhelminthes) infections on heavy metal concentrations in Littorina littorea. J Mar Biol Assoc UK 81:349–350. https://doi.org/10.1017/S0025315401003873

    Article  Google Scholar 

  • Faulkner S (2004) Urbanization impacts on the structure and function of forested wetlands. Urban Ecosyst 7:89–106

    Google Scholar 

  • Fearn S, Norton I (2011) The oldest captive Australian snake? A longevity record for a chappell island tiger snake (Notechis scutatus) in Tasmania. Herpetofauna 41:7–8

    Google Scholar 

  • Fitzpatrick M, Long D, Pijanowski B (2007) Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics. Appl Geochem 22:1825–1840

    CAS  Google Scholar 

  • Fontenot LW, Noble GP, Akins JM, Stephens MD, Cobb GP (2000) Bioaccumulation of polychlorinated biphenyls in ranid frogs and northern water snakes from a hazardous waste site and a contaminated watershed. Chemosphere 40:803–809

    CAS  Google Scholar 

  • Ford WM, Hill EP (1991) Organochlorine pesticides in soil sediments and aquatic animals in the Upper Steele Bayou Watershed of Mississippi. Arch Environ Contam Toxicol 20:161–167. https://doi.org/10.1007/Bf01055900

    Article  CAS  Google Scholar 

  • Forrow DM, Maltby L (2000) Toward a mechanistic understanding of contaminant-induced changes in detritus processing in streams: direct and indirect effects on detritivore feeding. Environ Toxicol Chem 19:2100–2106. https://doi.org/10.1897/1551-5028(2000)019%3c2100:Tamuoc%3e2.3.Co;2

    Article  CAS  Google Scholar 

  • Förstner U (2004) Sediments—resource or waste. J Soils Sediments 4:3–3. https://doi.org/10.1007/bf02990821

    Article  Google Scholar 

  • Gambrell R (1994) Trace and toxic metals in wetlands—a review. J Environ Qual 23:883–891

    CAS  Google Scholar 

  • Garden J, McAlpine C, Peterson A, Jones D, Possingham HP (2006) Review of the ecology of Australian urban fauna: a focus on spatially explicit processes. Austral Ecol 31:126–148. https://doi.org/10.1111/j.1442-9993.2006.01578.x

    Article  Google Scholar 

  • Gardiner M, Gorman R (1963) Further observations on plant selenium levels in Western Australia Australian. J Exp Agric 3:284–289

    CAS  Google Scholar 

  • Gavric JP et al (2015) Effects of metals on blood oxidative stress biomarkers and acetylcholinesterase activity in dice snakes (Natrix tessellata) from Serbia. Arch Biol Sci 67:303–315. https://doi.org/10.2298/Abs141203047g

    Article  Google Scholar 

  • Gentilli J, Bekle H (1993) History of the Perth lakes early days. J R Western Austr Hist Soc 10:442

    Google Scholar 

  • Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317. https://doi.org/10.1046/j.1523-1739.2000.98608.x

    Article  Google Scholar 

  • Gonzalez-Pinto J, Lund M, Quintero Vasquez M (2017) Yellagonga Regional Park wetlands water quality monitoring 2016/17 report. Mine Water and Environment Research Centre, Edith Cowan University, Perth

    Google Scholar 

  • Haarstad K, Bavor HJ, Maehlum T (2012) Organic and metallic pollutants in water treatment and natural wetlands: a review. Water Sci Technol 65:76–99. https://doi.org/10.2166/wst.2011.831

    Article  CAS  Google Scholar 

  • Halse S (1989) Wetlands of the Swan Coastal Plain past and present. In: Lowe G (ed) Proceedings of the Swan coastal plain groundwater management conference, pp 105–112

  • Hamer A, Organ A (2008) Aspects of the ecology and conservation of the Growling Grass Frog Litoria raniformis in an urban-fringe environment, southern Victoria. Aust Zool 34:393–407

    Google Scholar 

  • Haskins DL, Gogal RM, Tuberville TD (2020) Snakes as novel biomarkers of mercury contamination: a review. Rev Environ Contam Toxicol. 249:133–152

    CAS  Google Scholar 

  • Heydari Sereshk Z, Riyahi Bakhtiari A (2015) Concentrations of trace elements in the kidney, liver, muscle, and skin of short sea snake (Lapemis curtus) from the Strait of Hormuz Persian Gulf. Environ Sci Pollut Res Int 22:15781–15787. https://doi.org/10.1007/s11356-015-4631-3

    Article  CAS  Google Scholar 

  • Hitchings SP, Beebee TJ (1997) Genetic substructuring as a result of barriers to gene flow in urban Rana temporaria (common frog) populations: implications for biodiversity conservation. Heredity (Edinb) 79(Pt 2):117–127. https://doi.org/10.1038/hdy.1997.134

    Article  Google Scholar 

  • Hopkins WA (2007) Amphibians as models for studying environmental change. ILAR J 48:270–277. https://doi.org/10.1093/ilar.48.3.270

    Article  CAS  Google Scholar 

  • Hopkins WA, Rowe CL, Congdon JD (1999) Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ Toxicol Chem 18:1258–1263. https://doi.org/10.1897/1551-5028(1999)018%3c1258:Etecas%3e2.3.Co;2

    Article  CAS  Google Scholar 

  • Hopkins WA, Staub BP, Baionno JA, Jackson BP, Roe JH, Ford NB (2004) Trophic and maternal transfer of selenium in brown house snakes (Lamprophis fuliginosus). Ecotoxicol Environ Saf 58:285–293. https://doi.org/10.1016/S0147-6513(03)00076-9

    Article  CAS  Google Scholar 

  • Hylland K (2006) Polycyclic aromatic hydrocarbon (PAH) ecotoxicology in marine ecosystems. J Toxicol Environ Health A 69:109–123. https://doi.org/10.1080/15287390500259327

    Article  CAS  Google Scholar 

  • Kapustka LA, Clements WH, Ziccardi L, Paquin PR, Sprenger M, Wall D (2004) Issue paper on the ecological effects of metals. In: US Environmental Protection Agency, Risk Assessment Forum

  • Kinnear A, Garnett P, Bekle H, Upton K (1997) Yellagonga Wetlands: a study of the water chemistry and aquatic fauna

  • Kobryn H (2001) Land use changes and the properties of stormwater entering a wetland on a sandy coastal plain in Western Australia. PhD Thesis, Murdoch University

  • Lee S et al (2006) Impact of urbanization on coastal wetland structure and function. Austral Ecol 31:149–163

    Google Scholar 

  • Lemaire J et al (2018) Determinants of mercury contamination in viperine snakes, Natrix maura, in Western Europe. Sci Total Environ 635:20–25. https://doi.org/10.1016/j.scitotenv.2018.04.029

    Article  CAS  Google Scholar 

  • Lemly A (1996) Assessing the toxic threat of selenium to fish and aquatic birds Environ Monit Assess 43

  • Lettoof D, von Takach B, Bateman PW, Gagnon MM, Aubret F (2020) Investigating the role of urbanisation, wetlands and climatic conditions in nematode parasitism in a large Australian elapid snake. Int J Parasitol Parasites Wildl 11:32–39. https://doi.org/10.1016/j.ijppaw.2019.11.006

    Article  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

    Article  CAS  Google Scholar 

  • Marco A, Lopez-Vicente M, Perez-Mellado V (2004) Arsenic uptake by reptile flexible-shelled eggs from contaminated nest substrates and toxic effect on embryos. Bull Environ Contam Toxicol 72:983–990

    CAS  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176. https://doi.org/10.1007/s11252-007-0045-4

    Article  Google Scholar 

  • Nasri I, Hammouda A, Hamza F, Zrig A, Selmi S (2017) Heavy metal accumulation in lizards living near a phosphate treatment plant: possible transfer of contaminants from aquatic to terrestrial food webs. Environ Sci Pollut Res Int 24:12009–12014. https://doi.org/10.1007/s11356-015-5390-x

    Article  CAS  Google Scholar 

  • Newport M, Lund M (2014) Yellagonga Regional Park wetlandswater quality monitoring 2013–2014. Mine Water and Environment Research Centre, Edith Cowan University, Perth

    Google Scholar 

  • Nice HE (2009) A baseline study of contaminants in the sediments of the Swan and Canning estuaries: Water Science Technical Series Report No. 6. Department of Water, Government of Western Australia

  • Novitski R, Smith RD, Fretwell JD (1996) Wetland functions, values, and assessment. National Summary on Wetland Resources USGS Water Supply Paper 2425, pp 79–86

  • Nriagu JO (1990) Global metal pollution: poisoning the biosphere? Environ Sci Policy Sustain Dev 32:7–33

    Google Scholar 

  • Ohlendorf HM, Hothem RL, Aldrich TW (1988) Bioaccumulation of selenium by snakes and frogs in the San-Joaquin Valley. Calif Copeia. https://doi.org/10.2307/1445391

    Article  Google Scholar 

  • Ontario Ministry of Environment and Energy (1993) Guidelines for the protection and management of aquatic sediment quality in Ontario. https://www.ontario.ca/document/guidelines-identifying-assessing-and-managing-contaminated-sediments-ontario/identification-and-assessment. Accessed 24 Feb 2019

  • Orange P (2007) Fossorial frog foraging by the western tiger snake, Notechis scutatus (Elapidae). Herpetofauna 37:16–21

    Google Scholar 

  • Panno SV, Nuzzo VA, Cartwright K, Hensel BR, Krapac IG (1999) Impact of urban development on the chemical composition of ground water in a fen-wetland complex. Wetlands 19:236–245. https://doi.org/10.1007/Bf03161753

    Article  Google Scholar 

  • Quintela FM, Lima GP, Silveira ML, Costa PG, Bianchini A, Loebmann D, Martins SE (2019) High arsenic and low lead concentrations in fish and reptiles from Taim wetlands, a Ramsar site in southern Brazil. Sci Total Environ 660:1004–1014. https://doi.org/10.1016/j.scitotenv.2019.01.031

    Article  CAS  Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rainwater TR, Reynolds KD, Canas JE, Cobb GP, Anderson TA, McMurry ST, Smith PN (2005) Organochlorine pesticides and mercury in cottonmouths (Agkistrodon piscivorus) from northeastern Texas, USA. Environ Toxicol Chem 24:665–673

    CAS  Google Scholar 

  • Rich CN, Talent LG (2009) Soil ingestion may be an important route for the uptake of contaminants by some reptiles. Environ Toxicol Chem 28:311–315. https://doi.org/10.1897/08-035.1

    Article  CAS  Google Scholar 

  • Rodriguez Martin JA, De Arana C, Ramos-Miras JJ, Gil C, Boluda R (2015) Impact of 70 years urban growth associated with heavy metal pollution. Environ Pollut 196:156–163. https://doi.org/10.1016/j.envpol.2014.10.014

    Article  CAS  Google Scholar 

  • Rohr JR et al (2008) Agrochemicals increase trematode infections in a declining amphibian species. Nature 455:1235–1239. https://doi.org/10.1038/nature07281

    Article  CAS  Google Scholar 

  • Roy JW, Bickerton G (2011) Toxic groundwater contaminants: an overlooked contributor to urban stream syndrome? Environ Sci Technol 46:729–736

    Google Scholar 

  • Salice CJ, Suski JG, Bazar MA, Talent LG (2009) Effects of inorganic lead on Western fence lizards (Sceloporus occidentalis). Environ Pollut 157:3457–3464. https://doi.org/10.1016/j.envpol.2009.06.013

    Article  CAS  Google Scholar 

  • Sandstead H (2014) Zinc. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Elsevier, Amsterdam, pp 1369–1385

    Google Scholar 

  • Schulz R, Peall SK (2001) Effectiveness of a constructed wetland for retention of nonpoint-source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35:422–426

    CAS  Google Scholar 

  • Schwabenlander M, Buchweitz JP, Smith CE, Wunschmann A (2019) Arsenic, cadmium, lead, and mercury concentrations in the livers of free-ranging common garter snakes (Thamnophis sirtalis) from Minnesota, USA. J Wildl Dis 55(4):973–976

    CAS  Google Scholar 

  • Shine R (1987) Ecological comparisons of island and mainland populations of Australian Tigersnakes (Notechis, Elapidae). Herpetologica 43:233–240

    Google Scholar 

  • Sievers M, Hale R, Swearer SE, Parris KM (2019) Frog occupancy of polluted wetlands in urban landscapes. Conserv Biol 33:389–402. https://doi.org/10.1111/cobi.13210

    Article  Google Scholar 

  • Simoniello P, Trinchella F, Filosa S, Scudiero R, Magnani D, Theil T, Motta CM (2014) Cadmium contaminated soil affects retinogenesis in lizard embryos. J Exp Zool A Ecol Genet Physiol 321:207–219. https://doi.org/10.1002/jez.1852

    Article  CAS  Google Scholar 

  • Simpson G, Newsome D (2017) Environmental history of an urban wetland: from degraded colonial resource to nature conservation area. Geo-Geogr Environ 4:e00030. https://doi.org/10.1002/geo2.30

    Article  Google Scholar 

  • Simpson S, Batley G, Chariton A (2013) Revision of the ANZECC/ARMCANZ sediment quality guidelines. CSIRO Land and Water Science Report 08/07. CSIRO Land and Water

  • Sinang SC, Reichwaldt ES, Ghadouani A (2015) Local nutrient regimes determine site-specific environmental triggers of cyanobacterial and microcystin variability in urban lakes. Hydrol Earth Syst Sci 19:2179–2195. https://doi.org/10.5194/hess-19-2179-2015

    Article  Google Scholar 

  • Smalling KL, Reeves R, Muths E, Vandever M, Battaglin WA, Hladik ML, Pierce CL (2015) Pesticide concentrations in frog tissue and wetland habitats in a landscape dominated by agriculture. Sci Total Environ 502:80–90. https://doi.org/10.1016/j.scitotenv.2014.08.114

    Article  CAS  Google Scholar 

  • Soliman M, El-Shazly M, Abd-El-Samie E, Fayed H (2019) Variations in heavy metal concentrations among trophic levels of the food webs in two agroecosystems. Afr Zool 54:21–30

    Google Scholar 

  • Spurgeon DJ, Hopkin SP (1999) Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. J Appl Ecol 36:173–183. https://doi.org/10.1046/j.1365-2664.1999.00389.x

    Article  CAS  Google Scholar 

  • Stafford D, Plapp F, Fleet R (1977) Snakes as indicators of environmental contamination: relation of detoxifying enzymes and pesticide residues to species occurrence in three aquatic ecosystems. Arch Environ Contam Toxicol 5:15–27

    Google Scholar 

  • Tallkvist J, Oskarsson A (2015) Molybdenum. In: Nordberg GF, Fowler BA, Nordberg M (eds) Handbook on the toxicology of metals, 4th edn. Elsevier, Amsterdam, pp 1077–1089

    Google Scholar 

  • UNEP (2011) Draft revised guidance on the global monitoring plan for persistent organic pollutants, UNEP/POPS/COP.5/INF/27. United Nations Environment Programme, UNEP Chemicals, Geneva, Switzerland

  • US EPA (1998) Method 8270D: Semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS). https://www.epa.gov/sites/production/files/2015-07/documents/epa-8270d.pdf. Accessed 6 June 2019

  • US EPA (2007) Method 3051A: microwave assisted acid digestion of sediments, sludges, soils, and oils. https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf. Accessed 6 June 2019

  • Weir SM et al (2013) Organochlorine pesticides in squamate reptiles from southern Arizona, USA. Bull Environ Contam Toxicol 90:654–659. https://doi.org/10.1007/s00128-013-0990-y

    Article  CAS  Google Scholar 

  • Wixon JG (2013) Bioaccumulation of metals in an insular population of Florida Cottonmouth Snakes (Agkistrodon piscivorus conanti). University of Florida, Gainesville

    Google Scholar 

  • Wu Y, Zhang J, Zhou Q (1999) Persistent organochlorine residues in sediments from Chinese river/estuary systems. Environ Pollut 105:143–150. https://doi.org/10.1016/S0269-7491(98)00160-2

    Article  CAS  Google Scholar 

  • Wylie GD, Hothem RL, Bergen DR, Martin LL, Taylor RJ, Brussee BE (2009) Metals and trace elements in giant garter snakes (Thamnophis gigas) from the Sacramento Valley, California, USA. Arch Environ Contam Toxicol 56:577–587. https://doi.org/10.1007/s00244-008-9265-8

    Article  CAS  Google Scholar 

  • Zedler JB, Kercher S (2005) Wetland resources: status, trends, ecosystem services, and restorability. Ann Rev Environ Res 30:39–74. https://doi.org/10.1146/annurev.energy.30.050504.144248

    Article  Google Scholar 

  • Zeghnoun A, Pascal M, Fréry N, Sarter H, Falq G, Focant J-F, Eppe G (2007) Dealing with the non-detected and non-quantified data. The example of the serum dioxin data in the French dioxin and incinerators study. Organohalog Compd 69:2288–2291

    Google Scholar 

  • Zhang Z, Cui B, Fan X (2012) Removal mechanisms of heavy metal pollution from urban runoff in wetlands. Front Earth Sci 6:433–444. https://doi.org/10.1007/s11707-012-0301-7

    Article  CAS  Google Scholar 

  • Zhang Q et al (2017) Transboundary health impacts of transported global air pollution and international trade. Nature 543:705

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Holsworth Wildlife Research Endowment for providing funding support for this study. They also thank Kady Grosser, Ross McGibbon, Serin Subaraj, and Jordan Vos for field assistance in locating and catching tiger snakes. Snakes were collected under Western Australia’s Department of Biodiversity, Conservation and Attractions Permit No. 08-002624-1. Curtin University’s Animal Research Ethics Committee approved the use of snakes for this research under Approval No. ARE2018-23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Lettoof.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 303 kb)

Supplementary material 2 (PDF 194 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lettoof, D.C., Bateman, P.W., Aubret, F. et al. The Broad-Scale Analysis of Metals, Trace Elements, Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Wetlands Along an Urban Gradient, and the Use of a High Trophic Snake as a Bioindicator. Arch Environ Contam Toxicol 78, 631–645 (2020). https://doi.org/10.1007/s00244-020-00724-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-020-00724-z

Navigation