Perfluorinated Compounds (PFCs) in Soil of the Pearl River Delta, China: Spatial Distribution, Sources, and Ecological Risk Assessment

  • Baolin Liu
  • Hong ZhangEmail author
  • Yong Yu
  • Liuwei Xie
  • Juying Li
  • Xinxuan Wang
  • Weihua Dong


This study investigated the levels, spatial distribution, sources, and ecological risks of 16 perfluorinated compounds (PFCs) in 68 surface soil samples (0–20 cm) from 7 cities in the Pearl River Delta (PRD), China. Sixteen target PFCs, including perfluoroalkyl carboxylic acids (PFCAs, C5–C14, C16, and C18) and perfluoroalkyl sulfonic acids (PFSAs, C4, C6, C8, and C10), were analyzed by high-performance liquid chromatography-negative electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS). Concentrations of total PFCs (∑PFCs) ranged from 2.19 to 98.5 μg kg−1 (dry weight, dw), with an average of 5.97 μg kg−1 dw. Perfluorooctane sulfonate (PFOS) was the dominant PFC, accounting for 23.9% of ∑PFCs. The highest ∑PFCs was found in the soil sample collected from Dongguan with a large number of manufacturing industries. There were no significant differences of ∑PFCs among unban, industrial, and agricultural soils, indicating similar pollution sources in soil of the PRD. More than 70% of ∑PFCs in soil of the PRD could be attributed to the four principal components, represented by PFOS and perfluorooctanoic acid (PFOA), perfluoropentanoic acid (PFPeA) and perfluorohexanoic acid (PFHxA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUdA). Ecological risk assessment indicated that PFOA had low risk to soil plants and animals. However, the risk of PFOS to soil plants was relatively high in some studied regions.



This study was supported by the National Natural Science Foundation of China (No. 31670527), the Natural Science Foundation of Jilin Province, China (No. 20170101166JC), and the Natural Science Foundation of Changchun Normal University (No. 2015003).

Supplementary material

244_2019_674_MOESM1_ESM.docx (8.6 mb)
Supplementary material 1 (DOCX 8833 kb)


  1. Benskin JP, Ikonomou MG, Gobas FAPC, Begley TH, Woudneh MB, Cosgrove JR (2013) Biodegradation of n-ethyl perfluorooctane sulfonamido ethanol (EtFOSE) and EtFOSE-based phosphate diester (SAmPAP diester) in marine sediments. Environ Sci Technol 47:1381–1389CrossRefGoogle Scholar
  2. Boudreau TM, Wilson CJ, Cheong WJ, Sibley PK, Mabury SA, Muir DCG, Solomon KR (2003) Response of the zooplankton community and environmental fate of perfluorooctane sulfonic acid in aquatic microcosms. Environ Toxicol Chem 22(11):2739–2745CrossRefGoogle Scholar
  3. Brignole A, Porch JR, Krueger HO (2003) PFOS: a toxicity test to determine the effects of the test substance on seedling emergence of seven species of plants, in Toxicity to Terrestrial Plants. Wildlife International Ltd., EastonGoogle Scholar
  4. Chen S, Jiao X, Gai N, Li X, Wang X, Lu G, Piao H, Rao Z, Yang Y (2016) Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ Pollut 211:124–131CrossRefGoogle Scholar
  5. D’Eon JC, Hurley MD, Wallington TJ, Mabury SA (2006) Atmospheric chemistry of N-methyl perfluorobutane sulfonamidoethanol, C4F9SO2N(CH3)CH2CH2OH: kinetics and mechanism of reaction with OH. Environ Sci Technol 40(6):1862–1868CrossRefGoogle Scholar
  6. Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2004) Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol 38(12):3316–3321CrossRefGoogle Scholar
  7. Fang S, Chen X, Zhao S et al (2014) Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake, China. Environ Sci Technol 48(4):2173–2182CrossRefGoogle Scholar
  8. Gao S, Hong J, Yu Z et al (2011) Polybrominated diphenyl ethers in surface soils from e-waste recycling areas and industrial areas in South China: concentration levels, congener profile, and inventory. Environ Toxicol Chem 30(12):2688–2696CrossRefGoogle Scholar
  9. Guangdong Statistics Bureau (2012) Statistical yearbook of Guangdong, China. China Statistics, BeijingGoogle Scholar
  10. Higgins CP, Field JA, Criddle CS, Luthy RG (2005) Quantitative determination of perfluorochemicals in sediments and domestic sludge. Environ Sci Technol 39(11):3946–3956CrossRefGoogle Scholar
  11. Hu G, Zheng H, Zhang L et al (2013) Contamination characteristics of perfluorinated compounds in soil from Pearl River Delta, South China. China Environ Sci 33:37–42Google Scholar
  12. Joung KE, Jo EH, Kim HM, Choi K (2010) Toxicological effects of PFOS and PFOA on earthworm, Eisenia fetida. Environ Health Toxicol 25(3):181–186Google Scholar
  13. Kelly J, Solem L (2009) Identification of a major source of perfluorooctane sulfonate (PFOS) at a wastewater treatment plant in Brainerd, Minnesota. Reprod Toxicol 27(3–4):420CrossRefGoogle Scholar
  14. Kelly BC, Ikonomou MG, Blair JD et al (2009) Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environ Sci Technol 43(11):4037–4043CrossRefGoogle Scholar
  15. Li M (2009) Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates. Environ Toxicol 24(1):95–101CrossRefGoogle Scholar
  16. Li F, Zhang C, Qu Y et al (2010) Quantitative characterization of short- and long-chain perfluorinated acids in solid matrices in Shanghai, China. Sci Total Environ 408(3):617–623CrossRefGoogle Scholar
  17. Liu J, Wang N, Buck RC et al (2010a) Aerobic biodegradation of [14C] 6:2 fluorotelomer alcohol in a flow-through soil incubation system. Chemosphere 80(7):716–723CrossRefGoogle Scholar
  18. Liu J, Wang N, Szostek B et al (2010b) 6-2 fluorotelomer alcohol aerobic biodegradation in soil and mixed bacterial culture. Chemosphere 78(4):437–444CrossRefGoogle Scholar
  19. Liu G, Yu L, Li J, Liu X, Zhang G (2011) PAHs in soils and estimated air-soil exchange in the Pearl River Delta, South China. Environ Monitor Assess. 173(1–4):861–870CrossRefGoogle Scholar
  20. Liu B, Zhang H, Xie L et al (2015) Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China. Sci Total Environ 1–7:524–525Google Scholar
  21. Liu Z, Zhu L, Chen L (2016) Typical environment ecological risk assessment approach of new POPs chemicals. Chemical Industry Press, BeijingGoogle Scholar
  22. Liu B, Zhang H, Li J, Dong W, Xie L (2017) Perfluoroalkyl acids (PFAAs) in sediments from rivers of the Pearl River Delta, southern China. Environ Monit Assess 189(5):213CrossRefGoogle Scholar
  23. Loewen M, Halldorson T, Wang F, Tomi G (2005) Fluorotelomer carboxylic acids and PFOS in rainwater from an urban center in Canada. Environ Sci Technol 39(9):2944–2951CrossRefGoogle Scholar
  24. Loi EIH, Yeung LWY, Taniyasu S, Lam PKS, Kannan K, Yamashita N (2011) Trophic magnification of poly- and perfluorinated compounds in a subtropical food web. Environ Sci Technol 45(13):5506–5513CrossRefGoogle Scholar
  25. Luo Y, Luo X, Lin Z, Chen S, Liu J, Mai B, Yang Z (2009) Polybrominated diphenyl ethers in road and farmland soils from an e-waste recycling region in Southern China: concentrations, source profiles, and potential dispersion and deposition. Sci Total Environ 407(3):1105–1113CrossRefGoogle Scholar
  26. Martin JW, Ellis DA, Mabury SA et al (2005) Atmospheric chemistry of perfluoroalkanesulfonamides: kinetic and product studies of the OH radical and Cl atom initiated oxidation of N-ethyl perfluorobutanesulfonamide. Environ Sci Technol 40(3):864–872CrossRefGoogle Scholar
  27. Meng J, Wang T, Wang P et al (2013) Perfluorinated compounds and organochlorine pesticides in soils around Huaihe River: a heavily contaminated watershed in Central China. Environ Sci Pollut Res 20(6):3965–3974CrossRefGoogle Scholar
  28. Meng J, Wang T, Wang P et al (2015) Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China? Environ Pollut 199:102–109CrossRefGoogle Scholar
  29. Milinovic J, Lacorte S, Vidal M, Rigol A (2015) Sorption behaviour of perfluoroalkyl substances in soils. Sci Total Environ 511:63–71CrossRefGoogle Scholar
  30. Pan Y, Shi Y, Wang J et al (2011) Pilot investigation of perfluorinated compounds in river water, sediment, soil and fish in Tianjin, China. Bull Environ Contam Toxicol 87(2):152–157CrossRefGoogle Scholar
  31. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH (2006) Sources, fate and transport of perfluorocarboxylates. Environ Sci Technol 40(1):32–44CrossRefGoogle Scholar
  32. Sindermann AP, Porch JR, Krueger HO, Van Hoven RL (2002) PFOS: an acute toxicity study with the earthworm in an artificial soil substrate. Wildlife International, Ltd., EastonGoogle Scholar
  33. Stevens JB (2007) Surface water quality criterion for perfluorooctanoic acid. Minnesota Pollution Control Agency, MinnesotaGoogle Scholar
  34. Stock NL, Furdui VI, Muir DCG, Mabury SA (2007) Perfluoroalkyl contaminants in the Canadian arctic: evidence of atmospheric transport and local contamination. Environ Sci Technol 41(10):3529–3536CrossRefGoogle Scholar
  35. Wang T, Chen C, Naile JE et al (2011a) Perfluorinated compounds in water, sediment and soil from Guanting Reservoir, China. Bull Environ Contam Toxicol 87(1):74–79CrossRefGoogle Scholar
  36. Wang T, Lu Y, Chen C et al (2011b) Perfluorinated compounds in estuarine and coastal areas of north Bohai Sea, China. Mar Pollut Bull 62(8):1905–1914CrossRefGoogle Scholar
  37. Wang Y, Cheng Z, Li J et al (2012a) Polychlorinated naphthalenes (PCNs) in the surface soils of the Pearl River Delta, South China: distribution, sources, and air-soil exchange. Environ Pollut 170:1–7CrossRefGoogle Scholar
  38. Wang T, Lu Y, Chen C et al (2012b) Perfluorinated compounds in a coastal industrial area of Tianjin, China. Environ Geochem Health 34(3):301–311CrossRefGoogle Scholar
  39. Wang Z, Cousins IT, Scheringer M et al (2014) Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, part I: production and emissions from quantifiable sources. Environ Int 70:62–75CrossRefGoogle Scholar
  40. Wang T, Wang P, Meng J et al (2015) A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere 129:87–99CrossRefGoogle Scholar
  41. Xiao F, Halbach TR, Simcik MF, Gullver JS (2012) Input characterization of perfluoroalkyl substances in wastewater treatment plants: source discrimination by exploratory data analysis. Water Res 46(9):3101–3109CrossRefGoogle Scholar
  42. Xiao F, Simcik MF, Halbach TR, Gulliver JS (2015) Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: migration and implications for human exposure. Water Res 72:64–74CrossRefGoogle Scholar
  43. Xu J, Tian Y, Zhang Y et al (2013) Source apportionment of perfluorinated compounds (PFCs) in sediments: using three multivariate factor analysis receptor models. J Hazard Mater 260:483–488CrossRefGoogle Scholar
  44. Yu Y, Yu Z, Wang Z et al (2018) Polycyclic aromatic hydrocarbons (PAHs) in multi-phases from the drinking water source area of the Pearl River Delta (PRD) in South China: distribution, source apportionment, and risk assessment. Environ Sci Pollut Res 25:12557–12569CrossRefGoogle Scholar
  45. Zhang X, Zhang C, Wang G, Qiao M, Zhu Y (2012) Ecotoxicity of perfluorooctane sulfonate (PFOS) to springtails in soils. Asian J Ecotoxicol 7(5):525–529Google Scholar
  46. Zhang H, Luo Y, Teng Y, Wan H (2013) PCB contamination in soils of the Pearl River Delta, South China: levels, sources, and potential risks. Environ Sci Pollut Res 20(8):5150–5159CrossRefGoogle Scholar
  47. Zhang H, Zhao L, He L et al (2014) Pollution fingerprints and sources of perfluorinated compounds in surface soil of different functional areas. Environ Sci 35(7):2698–2704Google Scholar
  48. Zhu Z, Wang T, Meng J et al (2015) Perfluoroalkyl substances in the Daling River with concentrated fluorine industries in China: seasonal variation, mass flow, and risk assessment. Environ Sci Pollut Res 22(13):10009–10018CrossRefGoogle Scholar
  49. Zou M, Ran Y, Gong J et al (2007) Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China: occurrence, inventory, and fate. Environ Sci Technol 41(24):8262–8267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Baolin Liu
    • 1
    • 2
  • Hong Zhang
    • 1
    Email author
  • Yong Yu
    • 3
  • Liuwei Xie
    • 1
  • Juying Li
    • 4
  • Xinxuan Wang
    • 1
  • Weihua Dong
    • 5
  1. 1.College of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
  2. 2.College of ChemistryChangchun Normal UniversityChangchunChina
  3. 3.Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
  4. 4.College of Chemistry and Chemical EngineeringShenzhen UniversityShenzhenChina
  5. 5.College of Urban and Environmental ScienceChangchun Normal UniversityChangchunChina

Personalised recommendations