Advertisement

Influence of Meteorological Variables and Forest Fires Events on Air Quality in an Urban Area (Córdoba, Argentina)

  • A. C. MateosEmail author
  • A. C. Amarillo
  • I. Tavera Busso
  • H. A. Carreras
Article

Abstract

Extreme environmental events, such as forest fires, are a major emission source of aerosols into the atmosphere. Thus, to investigate the contribution of local forest fires to urban particulate matter, we selected several forest fire indicators, such as number of heat sources, fire events, and burnt area, and collected particles smaller than 2.5 µm (PM2.5) during a 2.5-year period in Cordoba City (Argentina). Temporal variation of PM2.5 concentration and composition was described considering fire and nonfire periods, and the influence of meteorological variables was estimated as well. On average, PM2.5 levels registered in Córdoba city during the study period were lower than values reported for other similar cities in Latin America, despite the fact that during wintertime an increase in PM2.5 levels was observed due to the occurrence of thermal inversions. Several fire events taking place in the nearby hills around the city during winter and spring 2013 suggest that biomass burning was a strong contribution to urban particles levels, which is consistent with the significant correlation between PM2.5 concentration and heat sources number. During fire periods, levels of Fe, Ca, and K, were significantly higher than in the nonfire periods, suggesting that these elements can be reliable forest fire markers.

Graphical Abstract

Notes

Funding

Funding was provided by Fondo para la Investigación Científica y Tecnológica (PICT 2016-3774) and Laboratório Nacional de Luz Síncrotron (XAFS1-17804).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

244_2019_618_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 55 kb)

References

  1. Al-Naiema I, Estillore AD, Mudunkotuwa IA, Grassian VH, Stone EA (2015) Impacts of co-firing biomass on emissions of particulate matter to the atmosphere. Fuel 162:111–120CrossRefGoogle Scholar
  2. Alves C, Gonçalves C, Fernandes AP, Tarelho L, Pio C (2011) Fireplace and woodstove fine particle emissions from combustion of western Mediterranean wood types. Atmos Res 101(3):692–700.  https://doi.org/10.1016/j.atmosres.2011.04.015 CrossRefGoogle Scholar
  3. Amarillo AC, Busso IT, Carreras H (2014) Exposure to polycyclic aromatic hydrocarbons in urban environments: health risk assessment by age groups. Environ Pollut 195:157–162CrossRefGoogle Scholar
  4. Amarillo AC, Mateos AC, Carreras H (2017) Source apportionment of PM-bound polycyclic aromatic hydrocarbons by positive matrix factorization in Córdoba City, Argentina. Arch Environ Contam Toxicol 72(3):380–390.  https://doi.org/10.1007/s00244-017-0384-y CrossRefGoogle Scholar
  5. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966CrossRefGoogle Scholar
  6. Artíñano B, Gómez-Moreno FJ, Díaz E et al (2017) Outdoor and indoor particle characterization from a large and uncontrolled combustion of a tire landfill. Sci Total Environ 593:543–551CrossRefGoogle Scholar
  7. Bukowiecki N, Lienemann P, Zwicky CN et al (2008) X-ray fluorescence spectrometry for high throughput analysis of atmospheric aerosol samples: the benefits of synchrotron X-rays. Spectrochim Acta Part B At Spectrosc 63:929–938.  https://doi.org/10.1016/0168-583X(85)90257-5 CrossRefGoogle Scholar
  8. Cao F, Zhang SC, Kawamura K, Zhang YL (2016) Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in Northeast China. Sci Total Environ 572:1244–1251.  https://doi.org/10.1016/j.scitotenv.2015.09.099 CrossRefGoogle Scholar
  9. Carreras HA, Calderón-Segura ME, Gómez-Arroyo S, Murillo-Tovar MA, Amador-Muñoz O (2013) Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environ Pollut 178:403–410.  https://doi.org/10.1016/j.envpol.2013.03.016 CrossRefGoogle Scholar
  10. Chacón Rivera LM (2015) Efecto De Los Incendios Forestales Sobre La Calidad Del Aire En Dos Ciudades Colombianas. Universidad Nacional de Colombia-Sede BogotáGoogle Scholar
  11. Chen T, He J, Lu X, She J, Guan Z (2016) Spatial and temporal variations of PM2.5 and its relation to meteorological factors in the urban area of Nanjing, China. Int J Environ Res Public Health 13:921.  https://doi.org/10.3390/ijerph13090921 CrossRefGoogle Scholar
  12. Dai W, Gao J, Cao G, Ouyang F (2013) Chemical composition and source identification of PM2.5 in the suburb of Shenzhen, China. Atmos Res 122:391–400.  https://doi.org/10.1016/j.atmosres.2012.12.004 CrossRefGoogle Scholar
  13. de Miranda RM, de Fatima Andrade M, Fornaro A, Astolfo R, de Andre PA, Saldiva P (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5(1):63–77.CrossRefGoogle Scholar
  14. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2018) InfoStat versión 2018. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.
  15. Duan F, Liu X, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282.  https://doi.org/10.1016/j.atmosenv.2003.11.037 CrossRefGoogle Scholar
  16. Esper N, Annunziata C, Alcaire A, Beaumont Fantozzi MM, Calisalla JE, Rubietti C (2012) Estadística de Incendios Forestales 2011. Secretariat of the Environment and Sustainable Development of the Nation. Undersecretariat of planning and environmental policy. Ciudad Autónoma de Buenos Aires. ISSN 1850-7230 (digital version)Google Scholar
  17. Esper N, Annunziata C, Bongiorno F, Alcaire A, Calisalla JE, Casuscelli D (2013) Estadística de Incendios Forestales 2012. Secretariat of the Environment and Sustainable Development of the Nation. Undersecretariat of planning and environmental policy. Ciudad Autónoma de Buenos Aires. ISSN 1850-7230 (digital version)Google Scholar
  18. Esper N, Alcaire A, Annunziata C, Borrás MM, Bongiorno F, Calisalla JE, Rubietti C (2014) Estadísticas de Incendios Forestales 2013. Secretariat of the Environment and Sustainable Development of the Nation. Undersecretariat of planning and environmental policy. Ciudad Autónoma de Buenos Aires. ISSN 1850-7239 (digital version)Google Scholar
  19. Esper N, Alcaire A, Annunziata C, Bongiorno F, Calisalla JE, Arbeletche G, Rubietti C (2016) Estadística de Incendios Forestales 2015. Secretariat of the Environment and Sustainable Development of the Nation. Undersecretariat of planning and environmental policy. Ciudad Autónoma de Buenos Aires. ISSN 1850-7239 (digital version)Google Scholar
  20. Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282.  https://doi.org/10.1016/S0034-4257(03)00184-6 CrossRefGoogle Scholar
  21. Gon Ryou H, Heo J, Kim SY (2018) Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea. Environ Pollut 240:963–972.CrossRefGoogle Scholar
  22. Guinot B, Cachier H, Sciare J, Tong Y, Xin W, Jianhua Y (2007) Beijing aerosol: atmospheric interactions and new trends. J Geophys Res Atmos 112:1.  https://doi.org/10.1029/2006JD008195 CrossRefGoogle Scholar
  23. INDEC (2010) Instituto Nacional de Estadísticas y Censos de la República Argentina. Censo poblacional 2010Google Scholar
  24. Knuckles TL, Campen MJ (2018) Air pollution cardiovascular disease. In: McQueen CABT-CT (ed) Comprehensive toxicology, 3rd edn. Elsevier, Oxford, pp 480–513.  https://doi.org/10.1016/B978-0-12-801238-3.99192-X CrossRefGoogle Scholar
  25. Kollanus V, Prank M, Gens A, Soares J, Vira J, Kukkonen J, Sofiev M, Salonen RO, Lanki T (2017) Mortality due to vegetation fire-originated PM2.5 exposure in Europe—assessment for the years 2005 and 2008. Environ Health Perspect 125:30.  https://doi.org/10.1289/EHP194 CrossRefGoogle Scholar
  26. Lanzaco BL, Olcese LE, Querol X, Toselli BM (2017) Analysis of PM2.5 in Córdoba, Argentina under the effects of the El Niño Southern Oscillation. Atmos Environ 171:49–58.  https://doi.org/10.1016/j.atmosenv.2017.10.001 CrossRefGoogle Scholar
  27. Le GE, Breysse PN, McDermott A, Eftim SE, Geyh A, Berman JD, Curriero FC (2014a) Canadian forest fires and the effects of long-range transboundary air pollution on hospitalizations among the elderly. ISPRS Int J Geo Inf 3:713–731.  https://doi.org/10.3390/ijgi3020713 CrossRefGoogle Scholar
  28. Le TH, Nguyen TNT, Lasko K, Ilavajhala S, Vadrevu KP, Justice C (2014b) Vegetation fires and air pollution in Vietnam. Environ Pollut 195:267–275.CrossRefGoogle Scholar
  29. Liang R, Zhang B, Zhao X, Ruan Y, Lian H, Fan Z (2014) Effect of exposure to PM2.5 on blood pressure: a systematic review and meta-analysis. J Hypertens 32:2130–2141.  https://doi.org/10.1097/HJH.0000000000000342 CrossRefGoogle Scholar
  30. Liang X, Zou T, Guo B, Li S, Zhang H, Zhang S, Huang H, Chen SX (2015) Assessing Beijing’s PM2.5 pollution: severity, weather impact, APEC and winter heating. Proc R Soc A R Soc.  https://doi.org/10.1098/rspa.2015.0257 Google Scholar
  31. Liu Y, Xing J, Wang S, Fu X, Zheng H (2018) Source-specific speciation profiles of PM 2.5 for heavy metals and their anthropogenic emissions in China. Environ Pollut 239:544–553.  https://doi.org/10.1016/j.envpol.2018.04.047 CrossRefGoogle Scholar
  32. López ML, Ceppi S, Palancar GG, Olcese LE, Tirao G, Toselli BM (2011) Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos Environ 45:5450–5457.  https://doi.org/10.1016/j.atmosenv.2011.07.003 CrossRefGoogle Scholar
  33. Martins V, Miranda AI, Carvalho A, Schaap M, Borrego C, Sá E (2012) Impact of forest fires on particulate matter and ozone levels during the 2003, 2004, and 2005 fire seasons in Portugal. Sci Total Environ 414:53–62.  https://doi.org/10.1016/j.scitotenv.2011.10.007 CrossRefGoogle Scholar
  34. Mateos A, González C (2016) Physiological response and sulfur accumulation in the biomonitor Ramalina celastri in relation to the concentrations of SO2 and NO2 in urban environments. Microchem J 125:116–123.  https://doi.org/10.1016/j.microc.2015.11.025 CrossRefGoogle Scholar
  35. Mateos AC, Amarillo AC, Busso IT, González CM (2018a) Evaluación espacial y temporal de la contaminación por SO2, NO2, O3 y CO en la ciudad de Córdoba. Rev Fac Cienc Exactas Fís Nat 5(2):47Google Scholar
  36. Mateos AC, Amarillo AC, Carreras HA, González CM (2018b) Land use and air quality in urban environments: human health risk assessment due to inhalation of airborne particles. Environ Res 161:370–380.  https://doi.org/10.1016/j.envres.2017.11.035 CrossRefGoogle Scholar
  37. Olcese LE, Toselli BM (2002) Some aspects of air pollution in Córdoba, Argentina. Atmos Environ 36:299–306.  https://doi.org/10.1016/S1352-2310(01)00336-3 CrossRefGoogle Scholar
  38. Oom D, Pereira JMC (2013) Exploratory spatial data analysis of global MODIS active fire data. Int J Appl Earth Obs Geoinf 21:326–340.  https://doi.org/10.1016/j.jag.2012.07.018 CrossRefGoogle Scholar
  39. Ozden B, Guler E, Vaasma T, Horvath M, Kiisk M, Kovacs T (2018) Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. J Environ Radioact 188:100–107CrossRefGoogle Scholar
  40. Pacyna EG, Pacyna JM, Fudala J, Strzelecka-Jastrzab E, Hlawiczka S, Panasiuk D, Friedrich R (2007) Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe. Atmos Environ 41(38):8557–8566.  https://doi.org/10.1016/j.atmosenv.2007.07.040 CrossRefGoogle Scholar
  41. Poupkou A, Markakis K, Liora N, Giannaros TM, Zanis P, Im U, Kanakidou M (2014) A modeling study of the impact of the 2007 Greek forest fires on the gaseous pollutant levels in the Eastern Mediterranean. Atmos Res 149:1–17.  https://doi.org/10.1016/j.atmosres.2014.05.015 CrossRefGoogle Scholar
  42. Rasheed A, Aneja VP, Aiyyer A, Rafique U (2015) Measurement and analysis of fine particulate matter (PM2.5) in urban areas of Pakistan. Aerosols Air Qual Res 15:426–439.  https://doi.org/10.4209/aaqr.2014.10.0269 CrossRefGoogle Scholar
  43. Reid JS, Koppmann R, Eck TF, Eleuterio DP (2005) A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmos Chem Phys 5:799–825.  https://doi.org/10.5194/acp-5-799-2005 CrossRefGoogle Scholar
  44. Sapkota A, Symons JM, Kleissl J, Wang L, Parlange MB, Ondov J, Breysse PN, Diette GB, Eggleston PA, Buckley TJ (2005) Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore City. Environ Sci Technol 39:24–32.  https://doi.org/10.1021/es035311z CrossRefGoogle Scholar
  45. Sax SN, Koutrakis P, Ruiz Rudolph PA, Cereceda-Balic F, Gramsch E, Oyola P (2007) Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003. J Air Waste Manag Assoc 57:845–855.  https://doi.org/10.3155/1047-3289.57.7.845 CrossRefGoogle Scholar
  46. Sofowote U, Dempsey F (2015) Impacts of forest fires on ambient near-real-time PM 2.5 in Ontario, Canada: meteorological analyses and source apportionment of the July 2011–2013 episodes. Atmos Pollut Res 6:1–10.  https://doi.org/10.5094/APR.2015.001 CrossRefGoogle Scholar
  47. Su X, Gough W, Shen Q (2016) Correlation of PM2.5 and meteorological variables in Ontario cities: statistical downscaling method coupled with artificial neural network. WIT Trans Ecol Environ 207:215–226.  https://doi.org/10.2495/AIR160201 CrossRefGoogle Scholar
  48. Tavera Busso I, Vera A, Mateos AC, Amarillo AC, Carreras H (2017) Histological changes in lung tissues related with sub-chronic exposure to ambient urban levels of PM2.5 in Córdoba, Argentina. Atmos Environ 167:616–624.  https://doi.org/10.1016/j.atmosenv.2017.08.061 CrossRefGoogle Scholar
  49. Wang Q, Shao M, Liu Y, William K, Paul G, Li X, Lu S (2007) Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmos Environ 41(37):8380–8390.  https://doi.org/10.1016/j.atmosenv.2007.06.048 CrossRefGoogle Scholar
  50. Weise DR, Wright CS (2014) Wildland fire emissions, carbon and climate: characterizing wildland fuels. For Ecol Manag 317:26–40.  https://doi.org/10.1016/j.foreco.2013.02.037 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Multidisciplinary Institute of Plant Biology (Pollution and Bioindicators Area) National Scientific and Technical Research Council (IMBIV-CONICET)Faculty of Physical and Natural Sciences, National University of Córdoba (FCEFyN-UNC)CórdobaArgentina

Personalised recommendations