Multicompartment Mercury Contamination in Major Gold Mining Districts at the Department of Bolivar, Colombia

  • Liliana Carranza-Lopez
  • Karina Caballero-Gallardo
  • Leonor Cervantes-Ceballos
  • Alexi Turizo-Tapia
  • Jesus Olivero-VerbelEmail author


Artisanal and small-scale gold mining is the main source of human exposure to mercury (Hg) in many countries. This study was designed to evaluate total Hg (T-Hg) concentrations in human hair, fish, soil, and air from two major gold-mining districts (GMDs) at the department of Bolivar, Colombia. Total Hg was analyzed using a direct Hg analyzer. The mean T-Hg concentration in hair samples was 3.07 ± 0.14 μg/g (range 0.15–25.1 μg/g; median 2.02 μg/g). The highest Hg level was observed in Mojana GMD, specifically at Achi-La Raya (9.2 ± 0.6 μg/g) and the lowest in Morales, at the Middle Magdalena GMD (1.50 ± 0.16 μg/g). Hair T-Hg values exceeded the U.S. Environmental Protection Agency reference level of 1.0 μg/g. Correlation between T-Hg in hair and stature was negative for the Mojana, but the opposite for Middle Magdalena, although for both GMDs hair T-Hg correlated positively with fish intake. The highest average T-Hg fish concentrations were observed in Caquetaia kraussii (0.37 ± 0.10 μg/g), Sorubim cuspicaudus (0.32 ± 0.16 μg/g), Plagioscion surinamensis (0.22 ± 0.02 μg/g), Trachelyopterus insignis (0.20 ± 0.02 μg/g), and Pseudoplatystoma magdaleniatum (0.20 ± 0.02 μg/g). Human health risk assessment of Hg based on fish consumption suggested that, with the exception of P. magdalenae, all economically important fish species are potentially harmful for the communities. Soil Hg levels in amalgam burning facilities were extremely high, and Hg in the air around mines and gold-processing shops exceeded international guidelines. In short, Hg pollution in GMDs of Bolivar is extensive, and this situation requires special attention to reduce environmental and human health problems.



The authors thank the National Program for Doctoral Formation (COLCIENCIAS, 567-2012) and the Government of the State of Bolivar, Colombia.

Supplementary material

244_2019_609_MOESM1_ESM.docx (16 kb)
Supplementary material 1 (DOCX 16 kb)


  1. Akagi H, Ikingura JR (1996) Monitoring of fish and human exposure to mercury due to gold mining in the Lake Victoria goldfields, Tanzania. Sci Total Environ 191:59–68CrossRefGoogle Scholar
  2. Ashe K (2012) Elevated mercury concentrations in humans of Madre de Dios, Peru. PLoS ONE 7:e33305CrossRefGoogle Scholar
  3. ATSDR (2007) Agency for Toxic Substances and Disease Registry. Health Consultation.
  4. Berrow M, Reaves G (1984) Background of trace elements in soils. In: Proceedings 1st international conference on environmental contamination. CEP Consultants, Edinburg, pp 333–340Google Scholar
  5. Castoldi AF, Coccini T, Manzo L (2003) Neurotoxic and molecular effects of methylmercury in humans. Rev Environ Health 18:19–32CrossRefGoogle Scholar
  6. Copat C, Conti GO, Signorelli C, Marmiroli S, Sciacca S, Vinceti M, Ferrante M (2013) Risk assessment for metals and PAHs by mediterranean seafood. Food Nutr Sci 4:10–13Google Scholar
  7. Cordy P, Veiga MM, Salih I, Al-Saadi S, Console S, Garcia O, Mesa LA, Velásquez-López PC, Roeser M (2011) Mercury contamination from artisanal gold mining in Antioquia, Colombia: the world’s highest per capita mercury pollution. Sci Total Environ 410:154–160CrossRefGoogle Scholar
  8. Davidson PW, Myers GJ, Cox C, Axtell C, Shamlaye C, Sloane-Reeves J, Cernichiari E, Needham L, Choi A, Wang Y (1998) Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. JAMA 280:701–707CrossRefGoogle Scholar
  9. Drasch G, Schupp I, Höfl H, Reinke R, Roider G (1994) Mercury burden of human fetal and infant tissues. Eur J Pediatr 153:607–610CrossRefGoogle Scholar
  10. Fu X, Feng X, Zhu W, Rothenberg S, Yao H, Zhang H (2010) Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environ Pollut 158:2324–2333CrossRefGoogle Scholar
  11. García-Sánchez A, Contreras F, Adams M, Santos F (2006) Atmospheric mercury emissions from polluted gold mining areas (Venezuela). Environ Geochem Health 28:529–540CrossRefGoogle Scholar
  12. Gerson JR, Driscoll CT, Hsu-Kim H, Bernhardt ES (2018) Senegalese artisanal gold mining leads to elevated total mercury and methylmercury concentrations in soils, sediments, and rivers. Elementa (Wash D C) 6:2–14Google Scholar
  13. González-Carrasco V, Velasquez-Lopez PC, Olivero-Verbel J, Pájaro-Castro N (2011) Air mercury contamination in the gold mining town of Portovelo, Ecuador. Bull Environ Contam Toxicol 87:250–253CrossRefGoogle Scholar
  14. Gutiérrez-Mosquera H, Sujitha S, Jonathan M, Sarkar S, Medina-Mosquera F, Ayala-Mosquera H, Morales-Mira G, Arreola-Mendoza L (2018) Mercury levels in human population from a mining district in Western Colombia. J Environ Sci 68:83–90CrossRefGoogle Scholar
  15. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001CrossRefGoogle Scholar
  16. Jan A, Ali A, Haq Q (2011) Glutathione as an antioxidant in inorganic mercury induced nephrotoxicity. J Postgrad Med 57:72–77CrossRefGoogle Scholar
  17. JECFA (2010) Joint FAO/WHO Expert Committee on Food Additives. Seventy-second meeting. Rome, 16–25 February 2010. Summary and conclusions. JECFA/72/SC. Food and Agriculture Organization of the United Nations World Health Organization. Issued 16th March 2010., FAO/WHO
  18. Lee G-S, Kim P-R, Han Y-J, Holsen TM, Seo Y-S, Yi S-M (2016) Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways. Atmos Chem Phys 16:4119–4133CrossRefGoogle Scholar
  19. Lide D (2008) CRC handbook of chemistry and physics, geophysics, astronomy, and acoustics. Section 14, abundance of elements in the Earth’s Crust and in the Sea, 89th edn. CRC Press, Boca RatonGoogle Scholar
  20. Marrugo-Negrete J, Benitez LN, Olivero-Verbel J (2008) Distribution of mercury in several environmental compartments in an aquatic ecosystem impacted by gold mining in northern Colombia. Arch Environ Contam Toxicol 55:305–316CrossRefGoogle Scholar
  21. Mason R, Reinfelder J, Morel F (1995) Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut 80:915–921CrossRefGoogle Scholar
  22. Mozaffarian D, Rimm EB (2006) Fish intake, contaminants, and human health: evaluating the risks and the benefits. JAMA 296:1885–1899CrossRefGoogle Scholar
  23. Olivero J, Solano B (1998) Mercury in environmental samples from a waterbody contaminated by gold mining in Colombia, South America. Sci Total Environ 217(1–2):83–89CrossRefGoogle Scholar
  24. Olivero J, Mendonza C, Mestre J (1995) Mercurio en cabello de diferentes grupos ocupacionales en una zona de minería aurífera en el Norte de Colombia. Rev Saude Publica 29:376–379CrossRefGoogle Scholar
  25. Olivero-Verbel J, Caballero-Gallardo K (2013) Nematode and mercury content in freshwater fish belonging to different trophic levels. Parasitol Res 112:2187–2195CrossRefGoogle Scholar
  26. Olivero-Verbel J, Ropero-Vega J, Ortiz-Rivera W, Vera-Ospina P, Torres-Fuentes N, Montoya-Rodriguez N (2006) Air mercury levels in a pharmaceutical and chemical sciences school building. Bull Environ Contam Toxicol 76:1038–1043CrossRefGoogle Scholar
  27. Olivero-Verbel J, Johnson-Restrepo B, Baldiris-Avila R, Güette-Fernández J, Magallanes-Carreazo E, Vanegas-Ramírez L, Kunihiko N (2008) Human and crab exposure to mercury in the Caribbean coastal shoreline of Colombia: impact from an abandoned chlor-alkali plant. Environ Int 34(4):476–482CrossRefGoogle Scholar
  28. Olivero-Verbel J, Caballero-Gallardo K, Negrete-Marrugo J (2011) Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, north of Colombia. Biol Trace Elem Res 144:118–132CrossRefGoogle Scholar
  29. Olivero-Verbel J, Young-Castro F, Caballero-Gallardo K (2014) Contaminación por mercurio en aire del distrito minero de San Martín de Loba en el departamento de Bolívar, Colombia. Rev Int Contam Ambient 30(1):7–13Google Scholar
  30. Olivero-Verbel J, Caballero-Gallardo K, Turizo-Tapia A (2015) Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ Sci Pollut Res 22:5895–5907CrossRefGoogle Scholar
  31. Olivero-Verbel J, Carranza-Lopez L, Caballero-Gallardo K, Ripoll-Arboleda A, Muñoz-Sosa D (2016) Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ Sci Poll Res 23:20761–20771CrossRefGoogle Scholar
  32. Onishchenko N, Karpova N, Sabri F, Castrén E, Ceccatelli S (2008) Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 106:1378–1387CrossRefGoogle Scholar
  33. Ottenbros IB, Boerleider RZ, Jubitana B, Roeleveld N, Scheepers PTJ (2019) Knowledge and awareness of health effects related to the use of mercury in artisanal and small-scale gold mining in Suriname. Environ Int 122:142–150CrossRefGoogle Scholar
  34. Palacios-Torres Y, Caballero-Gallardo K, Olivero-Verbel J (2018) Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 193:421–430CrossRefGoogle Scholar
  35. Paruchuri Y, Siuniak A, Johnson N, Levin E, Mitchell K, Goodrich JM, Renne EP, Basu N (2010) Occupational and environmental mercury exposure among small-scale gold miners in the Talensi-Nabdam District of Ghana’s Upper East region. Sci Total Environ 408:6079–6085CrossRefGoogle Scholar
  36. Pongratz R, Heumann KG (1998) Determination of concentration profiles of methyl mercury compounds in surface waters of polar and other remote oceans by GC-AFD. Int J Environ Anal Chem 71:41–56CrossRefGoogle Scholar
  37. Rocha-Román L, Olivero-Verbel J, Caballero-Gallardo KR (2018) Impacto De La Minería Del Oro Asociado Con La Contaminación Por Mercurio En Suelo Superficial De San Martín De Loba, Sur De Bolívar (Colombia). Rev Int Contam Amb 34:93–102CrossRefGoogle Scholar
  38. Santos-Francés F, García-Sánchez A, Alonso-Rojo P, Contreras F, Adams M (2011) Distribution and mobility of mercury in soils of a gold mining region, Cuyuni river basin, Venezuela. J Environ Manag 92:1268–1276CrossRefGoogle Scholar
  39. Silbernagel SM, Carpenter DO, Gilbert SG, Gochfeld M, Groth E 3rd, Hightower JM, Schiavone FM (2011) Recognizing and preventing overexposure to methylmercury from fish and seafood consumption: information for physicians. J Toxicol 2011:983072CrossRefGoogle Scholar
  40. Su MQ, Okita GT (1976) Embryocidal and teratogenic effects of methylmercury in mice. Toxicol Appl Pharmacol 38:207–216CrossRefGoogle Scholar
  41. Sundseth K, Pacyna JM, Pacyna EG, Pirrone N, Thorne RJ (2017) Global sources and pathways of mercury in the context of human health. Int J Environ Res Public Health 14:105CrossRefGoogle Scholar
  42. Tomiyasu T, Kodamatani H, Hamada YK, Matsuyama A, Imura R, Taniguchi Y, Hidayati N, Rahajoe JS (2017) Distribution of total mercury and methylmercury around the small-scale gold mining area along the Cikaniki River, Bogor, Indonesia. Environ Sci Pollut Res 24:2643–2652CrossRefGoogle Scholar
  43. USEPA (1989) United States Environmental Protection Agency. 1989. Washington, DCGoogle Scholar
  44. USEPA (1994) United States Environmental Protection Agency. Methods 245.1 for determination of mercury in water. U.S. Environmental Protection Agency, CincinnatiGoogle Scholar
  45. USEPA (1997) Mercury study report to congress volume I: executive summary.
  46. USEPA (2000) Guidance for Assessing Chemical Contamination Data for Use in Fish Advisories, vol II. Risk Assessment and Fish Consumption Limits EPA/823-B94-004. Washington, DCGoogle Scholar
  47. Veiga MM, Masson P, Perron D, Laflamme AC, Gagnon R, Jimenez G, Marshall BG (2018) An affordable solution for micro-miners in Colombia to process gold ores without mercury. J Clean Prod 205:995–1005CrossRefGoogle Scholar
  48. WHO (2003) World Health Organization. Elemental mercury and inorganic mercury compounds: human health aspects. In: Concise International Chemical Assessment Document (CICAD), vol 50. GenevaGoogle Scholar
  49. Zalups RK (2000) Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113–144Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla CampusUniversity of CartagenaCartagenaColombia
  2. 2.Public Health Research Group, School of Health Sciences, Bacteriology ProgramUniversidad Libre Seccional BarranquillaBarranquillaColombia

Personalised recommendations