Advertisement

Analysis of PM10 and PM2.5 Concentrations in an Urban Atmosphere in Northern Spain

  • M. Ángeles GarcíaEmail author
  • M. Luisa Sánchez
  • Adrián de los Ríos
  • Isidro A. Pérez
  • Nuria Pardo
  • Beatriz Fernández-Duque
Article

Abstract

This work analyses levels of particles PM10 and PM2.5 recorded at four air-quality monitoring stations located in the urban area of Valladolid (Spain) during 2015–2016. To achieve this, the evolution of particle concentrations at different time scales was determined. Average concentrations ranged from 15.3 to 17.6 µg m−3 for PM10 and between 8.9 and 14.8 µg m−3 for PM2.5. The highest monthly means were recorded in autumn and winter. The difference between mean concentrations at weekends and on weekdays for PM10 was around 3 µg m−3 at most of the measuring stations and was 1 µg m−3 for PM2.5. Two concentration peaks were found during the day, one in the morning and the other in the evening, which evidenced the influence of traffic and other anthropogenic activities on PM concentrations. Their mean values were approximately 21 and 17–21 µg m−3, respectively, for PM10. Mean maximum values for PM2.5 were 12 µg m−3, except at one of the measuring sites, with 17 µg m−3 for the morning maximum and 1 µg m−3 more for the nocturnal peak. In addition, the impact of long-distance transport of air masses in the study area was analysed by applying a HYSPLIT trajectory model, taking into account backward trajectories of European, African, and Atlantic origins as well as local conditions. In particular, high concentration events due to Saharan dust intrusions are presented. Finally, background levels of particle concentrations estimated at most sampling areas were around 15 and 7.7 µg m−3 for the PM10 and PM2.5 particle fractions, respectively.

Notes

Acknowledgements

This research was supported by the Ministry of Economy and Competitiveness and ERDF funds within the framework of projects CGL2009-11979 and CGL2014-53948-P. The authors wish to acknowledge the Valladolid City Council for the data used in this paper.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alonso S (2007) Caracterización de las intrusiones de polvo africano en Canarias. Thesis Doctoral, Universidad de la LagunaGoogle Scholar
  2. Amato F, Pandolfi M, Viana M, Querol X, Alastuey A, Moreno T (2009) Spatial and chemical patterns of PM10 in road dust deposited in urban environment. Atmos Environ 43(9):1650–1659CrossRefGoogle Scholar
  3. Artiñano B, Querol X, Salvador P, Rodríguez S, Alonso D, Alastuey A (2001) Assessment of airborne particulate levels in Spain in relation to the new EU-Directive. Atmos Environ 35:S43–S53CrossRefGoogle Scholar
  4. BOE (2011) Boletín Oficial del Estado, 25. Real Decreto 102/2011, de 28 de enero, relativo a la mejora de la calidad del aireGoogle Scholar
  5. Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease. Circulation 121:2331–2378CrossRefGoogle Scholar
  6. Cachorro VE, Burgos MA, Mateos D, Toledano C, Bennouna Y, Torres B, de Frutos AM, Herguedas A (2016) Inventory of African desert dust events in the north-central Iberian Peninsula in 2003–2014 based on sun-photometer-AERONET and particulate-mass-EMEP data. Atmos Chem Phys 16:8227–8248CrossRefGoogle Scholar
  7. Charron A, Harrison RM (2005) Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: sources and processes. Environ Sci Tech 39:7768–7776CrossRefGoogle Scholar
  8. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD. Accessed May 2017.
  9. EEA (2015) Air quality in Europe. No. 5/2015 report European Environmental Agency. Publication Office of the European UnionGoogle Scholar
  10. Escudero M, Castillo S, Querol X, Avila A, Alarcón M, Viana MM, Alastuey A, Cuevas E, Rodríguez S (2005) Wet and dry African dust episodes over eastern Spain. J Geophys Res 110(D18508):1–15Google Scholar
  11. Escudero M, Querol X, Pey J, Alastuey A, Pérez N, Ferreira F, Cuevas E, Rodríguez S, Alonso S (2007) A methodology for the quantification of the net African dust load in air quality monitoring networks. Atmos Environ 41:5516–5524CrossRefGoogle Scholar
  12. Fernández-Camacho R, de la Rosa JD, Sánchez de la Campa AM (2016) Trends and sources vs air mass origins in a mayor city in south-western Europe: implications for air quality managements. Sci Total Environ 553:305–315CrossRefGoogle Scholar
  13. Fuzzi S, Baltensperge B, Carslaw K, Decesari S, van der Gon Denier H et al (2015) Particulate matter, air quality and climate: lessons learned and future needs. Atmos Chem Phys 15:8217–8299CrossRefGoogle Scholar
  14. García MA, Sánchez ML, Pérez IA, Ozores MI, Pardo N (2016) Influence of atmospheric stability and transport on CH4 concentrations in northern Spain. Sci Total Environ 550:157–166CrossRefGoogle Scholar
  15. Gieti JK, Klemm O (2009) Analysis of traffic and meteorology on airborne particulate matter in Münster, northwest Germany. J Air Waste Manag Assoc 59:809–812CrossRefGoogle Scholar
  16. Harrison RM, Yin J (2000) Particulate matter in the atmosphere: which particle properties are important for its effects on health. Sci Total Environ 249:85–101CrossRefGoogle Scholar
  17. Inza A (2010) Estudio de series temporales y composición química del material particulado atmosférico en distintas áreas del País Vasco. Servicio Editorial de la Universidad del País VascoGoogle Scholar
  18. Inza A, Sánchez ME, Menéndez M, Ortega LA (2005) Análisis de contribución de fuentes en PM10 y PM2.5 en un área de fondo urbano con influencia de emisiones industriales (Abanto, Vizcaya). Gobierno Vasco. Departamento de Medio Ambiente y Ordenación del Territorio. Dirección de Planificación, Evaluación y Control AmbientalGoogle Scholar
  19. IPCC (2001) Climate Change 2001: the scientific basis. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Contribution of Working Group I to the third assessment report of the intergovernmental panel on climate change JT. Cambridge University Press, Cambridge, p 881Google Scholar
  20. Karagulian F, Beis CA, Dora CF, Prüs-Ustün AM, Bonjour S, Adair-Rohani H, Amann M (2015) Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos Environ 120:475–483CrossRefGoogle Scholar
  21. Kassomenos P, Vardoulakis S, Chaloulakou A, Grivas G, Borge R, Lumbreras J (2012) Levels, sources and seasonality of coarse particles (PM10–PM2.5) in three European capitals—implications for particulate pollution control. Atmos Environ 54:337–347CrossRefGoogle Scholar
  22. Katsoulis BD (1999) The potential for long-range transport of air-pollutants into Greece: a climatological analysis. Sci Total Environ 231:101–113CrossRefGoogle Scholar
  23. Naidja L, Ali-Khodja H, Khardi S (2017) Particulate matter from road traffic in Africa. J Earth Sci Geotech Eng 7:289–304Google Scholar
  24. Naidja L, Ali-Khodja H, Khardi S (2018) Sources and levels of particulate matter in North African and Sub-Saharan cities: a literature review. Environ Sci Pollut R 25:12303–12328CrossRefGoogle Scholar
  25. Negral L, Moreno-Grau S, Moreno J, Querol X, Viana MM, Alastuey A (2008) Natural and anthropogenic contribution to PM10 and PM2.5 in an urban area in the Western Mediterranean Coast. Water Air Soil Pollut 192:227–238CrossRefGoogle Scholar
  26. Paraskevopoulou D, Liakakou E, Gerasopoulos E, Mihalopoulos N (2015) Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece. Sci Total Environ 527–528:165–178CrossRefGoogle Scholar
  27. Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag 56:709–742CrossRefGoogle Scholar
  28. Puigcerver M, Carrascal MD (2008) El medio ambiente atmosférico: meteorología y contaminación. Universitat de Barcelona, Barcelona, p 248Google Scholar
  29. Querol X, Alastuey A, Viana MM, Rodríguez S, Artiñano B, Salvador P, Garcia do Santos S, Fernández Patier R, Ruiz CR, de la Rosa J (2004a) Speciation and origin of PM10 and PM2.5 in Spain. J Aerosol Sci 35:1151–1172CrossRefGoogle Scholar
  30. Querol X, Alastuey A, Rodríguez S, Viana MM, Artiñano B, Salvador P, Mantilla E, García do Santos S, Fernández Patier R, de la Rosa J, Sánchez de la Campa A, Menéndez M, Gil JJ (2004b) Levels of particulate matter in rural, urban and industrial sites in Spain. Sci Total Environ 334–335:359–376CrossRefGoogle Scholar
  31. Querol X, Rey J, Pandolfi M, Alastuey A, Cusack M, Pérez N, Moreno T, Viana M, Mihalopoulos N, Kallos G, Kleanthous S (2009) African dust contributions to mean ambient PM10 mass-levels across the Mediterranean Basin. Atmos Environ 43:4266–4277CrossRefGoogle Scholar
  32. Querol X, Viana M, Moreno T, Alastuey A (2012) Bases científico-técnicas para un Plan Nacional de Mejora de la Calidad del Aire. Informes CSIC, Cyan, Proyectos Editoriales, SA, MadridGoogle Scholar
  33. Querol X, Alastuey A, Pey J, Escudero M, Castillo S, Orío A, González A, Pallarés M, Jiménez S, Ferreira F, Marqués F, Monjardino J, Cuevas E, Alonso S, Artíñano B, Salvador P, de la Rosa J (2013) Procedimiento para la identificación de episodios naturales de PM10 y PM2,5 y la demostración de causa en lo referente a las superaciones del valor límite diario de PM10. S.G. de Calidad del Aire y Medio Ambiente Industrial (Dirección General de Calidad y Evaluación Ambiental). Ministerio de Agricultura, Alimentación y Medio Ambiente-EspañaGoogle Scholar
  34. Rodríguez S, Querol X, Alastuey A, Kallos G, Kakaliagou O (2001) Saharan dust contributions to PM10 in Southern and Eastern Spain. Atmos Environ 35:2433–2447CrossRefGoogle Scholar
  35. Rojas N (2005) Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Rev Ing 22:54–60Google Scholar
  36. Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display system: READY. Environ Modell Softw 95:210–228CrossRefGoogle Scholar
  37. Salvador P, Artiñano B (2000) Evaluación de la contaminación atmosférica producida por partículas en suspensión en las redes de calidad del aire de la Comunidad de Madrid. Serie de Informes Técnicos CIEMAT, No. 921 Editorial CIEMAT, Madrid, p 138Google Scholar
  38. Sánchez ML, García MA, Pérez IA, de Torre B (2007) Ground laser remote sensing measurement of Saharan dust outbreak in Central Spain. Influence on PM10 concentration in the lower and upper Spanish plateaus. Chemosphere 67:229–239CrossRefGoogle Scholar
  39. Toledano C, Cachorro VE, de Frutos AM, Torres B, Berjón A, Sorribas M, Stone RS (2009) Airmass classification analysis of aerosol types at El Arenosillo (Spain). J Appl Meteorol Clim 48:962–981CrossRefGoogle Scholar
  40. Viana M, Querol X, Alastuey A, Cuevas E, Rodríguez S (2002) Influence of African dust on the levels of atmospheric particulates in the Canary Islands air quality network. Atmos Environ 36:5861–5875CrossRefGoogle Scholar
  41. Viana M, Querol X, Alastuey A, Gangoiti G, Menéndez M (2003) PM10 levels in the Basque Country (Northern Spain): analysis of a 5-year data record and interpretation of seasonal variations. Atmos Environ 37:2879–2891CrossRefGoogle Scholar
  42. Wang Y, Zhang R, Saravanan R (2014) Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis. Nat Commun 5:3098.  https://doi.org/10.1038/ncomms4098 CrossRefGoogle Scholar
  43. WHO (2006) World Health Organization. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005. WHO, GenevaGoogle Scholar
  44. WHO (2013) Health effects of particulate matter. Publications, World Health Organization Regional Office for Europe, CopenhagenGoogle Scholar
  45. Wilks DS (2011) Statistical methods in the atmospheric sciences, 3rd edn. Academic Press, San DiegoGoogle Scholar
  46. Zhou LX, Worthy DEJ, Lang PM, Ernest MK, Zhang XC, Wen YP, Li JL (2004) Ten years of atmospheric methane observations at a high elevation site in western China. Atmos Environ 38:7041–7054CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. Ángeles García
    • 1
    Email author
  • M. Luisa Sánchez
    • 1
  • Adrián de los Ríos
    • 1
  • Isidro A. Pérez
    • 1
  • Nuria Pardo
    • 1
  • Beatriz Fernández-Duque
    • 1
  1. 1.Department of Applied PhysicsUniversity of ValladolidValladolidSpain

Personalised recommendations