Skip to main content

Advertisement

Log in

Mercury Biomagnification Through a Coral Reef Ecosystem

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Total mercury (Hg) and stable isotopes of nitrogen and carbon were determined in the muscle tissue of 50 species of fishes and invertebrates collected at two sites along the Florida reef tract from April 2012 to December 2013. The objective was to test the hypothesis that high biodiversity in coral reefs leading to complex food webs with increased lateral links reduces biomagnification. However, Hg levels ranged as high 6.84 mg/kg. Interestingly, it was not highest in great barracuda (Sphyraena barracuda), considered the top predatory fish, but instead in small porkfish (Anisotremus virginicus), possibly due to their role as a cleaner fish. Trophic magnification slopes (TMS; from regression of log Hg on δ15N) as a measure of biomagnification did not differ between sites, ranging from 0.155 ± 0.04 (± 95% CI) to 0.201 ± 0.07. These TMS also were within the ranges of slopes reported for food webs in other ecosystems; thus, biomagnification of Hg in muscle tissue was not reduced in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams DH, McMichael RH Jr, Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001, Florida Marine Research Institute Technical Report TR-9, 2nd edn, rev p 57

  • Adams DH, Sonne C, Basu N et al (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408(23):5808–5816

    Article  CAS  Google Scholar 

  • Al-Reasi HA, Ababneh FA, Lean DR (2007) Evaluating mercury biomagnification in fish from a tropical marine environment using stable isotopes (δ13C and δ15N). Environ Toxicol Chem 26(8):1572–1581

    Article  CAS  Google Scholar 

  • Apeti D, Lauenstein G, Evans D (2012) Recent status of total mercury and methyl mercury in the coastal waters of the northern Gulf of Mexico using oysters and sediments from NOAA’s mussel watch program. Mar Poll Bull 64:2399–2408

    Article  CAS  Google Scholar 

  • Bank MS, Chesney E, Shine JP, Maage A, Senn DB (2007) Mercury bioaccumulation and trophic transfer in sympatric snapper species from the Gulf of Mexico. Ecol Appl 17(7):2100–2110

    Article  Google Scholar 

  • Berry KL, Seemann J, Dellwig O, Struck U, Wild C, Leinfelder RR (2013) Sources and spatial distribution of heavy metals in scleractinian coral tissues and sediments from the Bocas del Toro Archipelago, Panama. Environ Monitor Assess 185:9089–9099

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017

    Article  CAS  Google Scholar 

  • Bohlke JE, Chaplin CCG (1968) Fishes of the Bahamas and adjacent waters. Livingston Publication Co, Wynnewood

    Google Scholar 

  • Borgå K, Kidd KA, Muir DC, Berglund O, Conder JM, Gobas FA, Kucklick J, Malm O, Powell DE (2012) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manag 8(1):64–84

    Article  CAS  Google Scholar 

  • Brockmann HJ, Hailman JP (1976) Fish cleaning symbiosis: notes on juvenile angelfishes (Pomacanthus, Chaetodontidae) and comparisons with other species. Ethology 42:129–138

    Google Scholar 

  • Cabana G, Tremblay A, Kalff J, Rasmussen JB (1994) Pelagic food chain structure in Ontario lakes: a determinant of mercury levels in lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 51(2):381–389

    Article  CAS  Google Scholar 

  • Chang CC, Kendall C, Silva SR, Battaglin WA, Campbell DH (2002) Nitrate stable isotopes: tools for determining nitrate sources among different land uses in the Mississippi River Basin. Can J Fish Aquatic Sci 59(12):1874–1885

    Article  CAS  Google Scholar 

  • Chasar LC, Scudder BC, Stewart AR, Bell AH, Aiken GR (2009) Mercury cycling in stream ecosystems 3. Trophic dynamics and methylmercury bioaccumulation. Environ Sci Technol 43(8):2733–2739

    Article  CAS  Google Scholar 

  • Chen CY, Driscoll CT, Kamman NC (2012) Mercury hotspots in freshwater ecosystems: drivers, processes, and patterns. In: Bank MC (ed) Mercury in the environment: pattern and process. University California Berkeley Press, Berkeley

    Google Scholar 

  • Chouvelon T, Warnau M, Churlaud C, Bustamante P (2009) Hg concentrations and related risk assessment in coral reef crustaceans, mollusks and fish from New Caledonia. Environ Pollut 157(1):331–340

    Article  CAS  Google Scholar 

  • Chumchal MM, Rainwater TR, Osborn SC et al (2011) Mercury speciation and biomagnification in the food web of Caddo Lake, Texas and Louisiana, USA, a subtropical freshwater ecosystem. Environ Toxicol Chem 30(5):1153–1162

    Article  CAS  Google Scholar 

  • Cowie-Haskell BD, Delaney JM (2003) Integrating science into the design of the Tortugas ecological reserve. Mar Technol Soc J 37:1–14

    Article  Google Scholar 

  • Damseaux F, Kiszka JJ, Heithaus MR et al (2017) Spatial variation in the accumulation of POPs and mercury in bottlenose dolphins of the Lower Florida Keys and the coastal Everglades (South Florida). Environ Pollut 220:577–587

    Article  CAS  Google Scholar 

  • Dittman JA, Driscoll CT (2009) Factors influencing changes in mercury concentrations in lake water and yellow perch (Perca flavescens) in Adirondack lakes. Biogeochemistry 93(3):179–196

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983

    Article  CAS  Google Scholar 

  • Evans DW, Crumley PH (2005) Mercury in Florida Bay fish: spatial distribution of elevated concentrations and possible linkages to Everglades restoration. Bull Mar Sci 77(3):321–346

    Google Scholar 

  • Evers DC, Han Y-J, Driscoll CT et al (2007) Biological mercury hotspots in the northeastern United States and southeastern Canada. Bioscience 57:29–43

    Article  Google Scholar 

  • Evers DC, Graham RT, Perkins CR, Michener R, Divoll T (2009) Mercury concentrations in the goliath grouper of Belize: an anthropogenic stressor of concern. Endanger Species Res 7:249–256

    Article  Google Scholar 

  • Farmer TM, Wright RA, DeVries DR (2010) Mercury concentration in two estuarine fish populations across a seasonal salinity gradient. Trans Am Fish Soc 139:1896–1912

    Article  CAS  Google Scholar 

  • Fry B, Chumchal MM (2012) Mercury bioaccumulation in estuarine food webs. Ecol Appl 22:606–623

    Article  Google Scholar 

  • Grieb TM, Driscoll CT, Schofield CL, Bowie GL, Porcella DB (1990) Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environ Toxicol Chem 9:919–930

    Article  CAS  Google Scholar 

  • Guentzel JL, Landing WM, Gill GA, Pollman CD (2001) Processes influencing rainfall deposition of mercury in Florida. Environ Sci Technol 35:863–873

    Article  CAS  Google Scholar 

  • Guzmán HM, Garcı́a EM (2002) Mercury levels in coral reefs along the Caribbean coast of Central America. Mar Pollut Bull 44:1415–1420

    Article  Google Scholar 

  • Hammerschmidt C, Fitzgerald W (2006) Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Arch Environ Contam Toxicol 51(3):416–424

    Article  CAS  Google Scholar 

  • Heyes A, Mason RP, Kim EH, Sunderland E (2006) Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Mar Chem 102:134–147

    Article  CAS  Google Scholar 

  • Hoese H, Moore R (1998) Fishes of the Gulf of Mexico, Texas, Louisiana, and adjacent waters, 2nd edn. Texas A and M University Press, College Station

    Google Scholar 

  • Hoffmann F, Radax R, Woebken D et al (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11(9):2228–2243

    Article  CAS  Google Scholar 

  • Hollweg T, Gilmour CC, Mason R (2010) Mercury and methylmercury cycling in sediments of the mid-Atlantic continental shelf and slope. Limnol Oceanogr 55:2703–2722

    Article  CAS  Google Scholar 

  • Hong YS, Hull P, Rifkin E, Bouwer EJ (2013) Bioaccumulation and biomagnification of mercury and selenium in the Sarasota Bay ecosystem. Environ Toxicol Chem 32:1143–1152

    Article  CAS  Google Scholar 

  • Huge DH, Schofield PJ, Jacoby CA, Frazer TK (2014) Total mercury concentrations in lionfish (Pterois volitans/miles) from the Florida Keys National Marine Sanctuary, USA. Mar Pollut Bull 78(1):51–55

    Article  CAS  Google Scholar 

  • Jardine TD, Kidd KA, Fisk AT (2006) Applications, considerations, and sources of uncertainty when using stable isotope analysis in ecotoxicology. Environ Sci Technol 40:7501–7511

    Article  CAS  Google Scholar 

  • Jepsen DB, Winemiller KO (2002) Structure of tropical river food webs revealed by stable isotope ratios. Oikos 96(1):46–55

    Article  Google Scholar 

  • Johannes R, Alberts J, D’elia C et al (1972) The metabolism of some coral reef communities: a team study of nutrient and energy flux at Eniwetok. Bioscience 22(9):541–543

    Article  Google Scholar 

  • Karagas MR, Choi AL, Oken E et al (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120(6):799–806

    Article  CAS  Google Scholar 

  • Karimi R, Frisk M, Fisher NS (2013) Contrasting food web factor and body size relationships with Hg and Se concentrations in marine biota. PLoS ONE 8(9):e74695

    Article  CAS  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394

    Article  CAS  Google Scholar 

  • Lowery TA, Winters RS, Garrett ES III (2007) Comparison of total mercury determinations of fish fillet homogenates by thermal decomposition, amalgamation, and atomic absorption spectrophotometry versus cold vapor atomic absorption spectrophotometry. J Aquat Food Prod Technol 16(2):5–15

    Article  CAS  Google Scholar 

  • Matley J, Fisk A, Tobin A, Heupel M, Simpfendorfer C (2016) Diet-tissue discrimination factors and turnover of carbon and nitrogen stable isotopes in tissues of an adult predatory coral reef fish, Plectropomus leopardus. Rapid Commun Mass Spectrom 30:29–44

    Article  CAS  Google Scholar 

  • Micheli F, Mumby PJ, Brumbaugh DR et al (2014) High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biol Conserv 171:186–194

    Article  Google Scholar 

  • Morrison RJ, Peshut PJ, West RJ, Lasorsa BK (2015) Mercury (Hg) speciation in coral reef systems of remote Oceania: implications for the artisanal fisheries of Tutuila, Samoa Islands. Mar Poll Bull 96(1):41–56

    Article  CAS  Google Scholar 

  • Odum HT, Odum EP (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr 25:291–320

    Article  Google Scholar 

  • Oken E, Radesky JS, Wright RO, et al (2008) Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. Am J Epidemiol 167(10):1171–1181

    Article  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci 99(7):4419–4423

    Article  CAS  Google Scholar 

  • Plessi M, Bertelli D, Monzani A (2001) Mercury and selenium content in selected seafood. J Food Compos Anal 14(5):461–467

    Article  CAS  Google Scholar 

  • Riget F, Moller P, Dietz R, Nielsen TG, Asmund G, Strand J, Larsen MM, Hobson KA (2007) Transfer of mercury in the marine food web of West Greenland. J Environ Monit 9:877–883

    Article  CAS  Google Scholar 

  • Rumbold DG, Evans DW, Niemczyk S, Fink LE, Laine KA, Howard N, Krabbenhoft D, Zucker M (2011) Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. Estuar Coast 34(3):494–513

    Article  CAS  Google Scholar 

  • Rumbold DG, Lange TR, Richard D, DelPizzo G, Hass N (2018) Mercury biomagnification through food webs along a salinity gradient down-estuary from a biological hotspot. Estuar Coast Shelf Sci 200:116–125

    Article  CAS  Google Scholar 

  • Sazima C, Guimarães PR, Dos Reis SF, Sazima I (2010) What makes a species central in a cleaning mutualism network? Oikos 119(8):1319–1325

    Article  Google Scholar 

  • Scheuhammer A, Braune B, Chan HM et al (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509:91–103

    Article  CAS  Google Scholar 

  • Seixas TG, Moreira I, Malm O, Kehrig HA (2013) Ecological and biological determinants of methylmercury accumulation in tropical coastal fish. Environ Sci Pollut Res 20(2):1142–1150

    Article  CAS  Google Scholar 

  • Starck W (1968) A list of fishes of Alligator Reef, Florida with comments on the nature of the Florida reef fish fauna. Undersea Biol 1:4–40

    Google Scholar 

  • Stemberger RS, Chen CY (1998) Fish tissue metals and zooplankton assemblages of northeastern US lakes. Can J Fish Aquat Sci 55(2):339–352

    Article  CAS  Google Scholar 

  • Strom RN, Braman RS, Jaap WC, Dolan P, Donnelly KB, Martin DF (1992) Analysis of selected trace metals and pesticides offshore of the Florida Keys. Fla Sci 55:1–13

    CAS  Google Scholar 

  • Sveinsdottir AY, Mason RP (2005) Factors controlling mercury and methylmercury concentrations in largemouth bass (Micropterus salmoides) and other fish from Maryland reservoirs. Arch Environ Contam Toxicol 49:528–545

    Article  CAS  Google Scholar 

  • Thera JC, Rumbold DG (2014) Biomagnification of mercury through a subtropical coastal food web off Southwest Florida. Environ Toxicol Chem 33(1):65–73

    Article  CAS  Google Scholar 

  • Tremain DM, O’Donnell KE (2014) Total mercury levels in invasive lionfish, Pterois volitans and Pterois miles (Scorpaenidae), from Florida waters. Bull Mar Sci 90(2):565–578

    Article  Google Scholar 

  • USEPA (2001) Water quality criterion for the protection of human health: methylmercury. Office of Science and Technology and Office of Water EPA/823/R-01-001, Washington, DC

    Google Scholar 

  • Voegborlo RB, Akagi H (2007) Determination of mercury in fish by cold vapour atomic absorption spectrometry using an automatic mercury analyzer. Food Chem 100(2):853–858

    Article  CAS  Google Scholar 

  • Watras CJW, Back RC, Halvorsena S, Hudson RJM, Morrison KA, Wente SP (1998) Bioaccumulation of mercury in pelagic freshwater food webs. Sci Total Environ 219:183–208

    Article  CAS  Google Scholar 

  • Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM (2003) Ecotoxicology of mercury. Handb Ecotoxicol 2:409–463

    Google Scholar 

  • Wolf N, Carleton SA, Martínez del Rio C (2009) Ten years of experimental animal isotopic ecology. Funct Ecol 23:17–26

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank FGCU students that provided field or laboratory support on this project as paid interns or volunteers, including Alex Leynse, Amanda Ellsworth, Ashley Brandt, Nicole Fronczkowski, Megan Conkling, Adam Catasus, and Jeff Zingre. They also thank Curt Slonim for his assistance in catching and providing many of the great barracuda from TRL. Finally, we thank two anonymous reviewers for their comments that improved this manuscript. Funding for this work was provided by an internal grant from Florida Gulf Coast University, Office of Sponsored Programs. Additionally, we also split samples and leveraged fieldwork of a much larger study (by Parsons) investigating biomagnification of ciguatoxins funded through NOAA’s Ecology and Oceanography of Harmful Algal Blooms (ECOHAB) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darren G. Rumbold.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1557 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rumbold, D.G., Lienhardt, C.T. & Parsons, M.L. Mercury Biomagnification Through a Coral Reef Ecosystem. Arch Environ Contam Toxicol 75, 121–133 (2018). https://doi.org/10.1007/s00244-018-0523-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-018-0523-0

Navigation