Arsenic Exposure and Effects in Humans: A Mini-Review in Brazil

  • Annaliza Carvalho Meneguelli de Souza
  • Marcelo Gomes de Almeida
  • Inácio Abreu Pestana
  • Cristina Maria Magalhães de Souza


Arsenic (As) is widely studied in several countries due to its toxicity to biota in the environment. Arsenic sources may be natural or anthropogenic, and the mobility of the element is ruled by physicochemical conditions that also define the dominant As species in the environment. Arsenic levels are evaluated in various abiotic and biotic environmental samples. The highest As levels are observed in sediment, from where it may be mobilized into the aquifers. This article reviews studies about As in the world but with emphasis on studies performed in Brazil, a country where continental water bodies are a common geographic feature. We reviewed 64 studies published between 1985 and 2016. The results indicate that in recent years more studies have been conducted to determine As levels in foods and human samples as a tool to evaluate the exposure of populations and identify potential sources. In Brazil, the main problems associated with contamination with As are the use of wood preservatives and herbicides as well as the impact caused by mining. Also, the precarious character of sewage treatment systems contributes to the contamination of water bodies.



The authors thank the Laboratory of Environmental Sciences of the State University of the North of Rio de Janeiro (Laboratório de Ciências Ambientais, LCA, da Universidade Estadual Norte Fluminense, UENF) for the field and laboratory logistics. C.M.M. Souza received financial support from the Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (Fundação Carlos Chagas Filho de Amparo à Pesquisado Estado do Rio de Janeiro, FAPERJ; E-26/20/2014).

Supplementary material

244_2018_586_MOESM1_ESM.doc (60 kb)
Supplementary material 1 (DOC 60 kb)


  1. Agusa T et al (2014) Human exposure to arsenic from drinking water in Vietnam. Sci Total Environ 488–489:562–569CrossRefGoogle Scholar
  2. Alkmim Filho JF, Germano A, Dibai WLS, Vargas EA, Melo MM (2014) Heavy metals investigation in bovine tissues in Brazil. Food Sci Technol 34(1):110–115CrossRefGoogle Scholar
  3. Altas L, Isik M, Kavurmaci M (2011) Determination of arsenic levels in the water resources of Aksaray Province, Turkey. J Environ Manag 92:2182–2192CrossRefGoogle Scholar
  4. Andrade RP, Mello JWV, Windmöller CC, Silva JBB, Figueiredo BR (2012) Evaluation of arsenic availability in sulfidic materials from gold mining areas in Brazil. Water Air Soil Pollut 223:4679–4686CrossRefGoogle Scholar
  5. Angeli JLF, Trevizani TH, Ribeiro A, Machado EC, Figueira RCL, Markert B, Fraenzle S, Wuenschmann S (2013) Arsenic and other trace elements in two catfish species from Paranaguá Estuarine Complex, Paraná, Brazil. Environ Monit Assess 185:8333–8342CrossRefGoogle Scholar
  6. Anjos VE, Machado EC, Grassi MT (2012) Biogeochemical behavior of arsenic species at Paranaguá Estuarine Complex, Southern Brazil. Aquat Geochem 18:407–420CrossRefGoogle Scholar
  7. ANVISA—Agência Nacional de Vigilância Sanitária—N° 42 (2013) Dispõe sobre o regulamento técnico MERCOSUL sobre limites máximos de contaminantes inorgânicos em alimentos. Publicação DOU n° 168, 33–35Google Scholar
  8. Appel JSL, Terescova V, Rodrigues VCB, Vargas VMF (2006) Aspectos toxicológicos do preservativo de madeira CCA (arseniato de cobre cromatado): revisão. Rev Bras Toxicol 19:33–47Google Scholar
  9. Araújo HJB, Magalhães WLE, Oliveira LC (2012) Durabilidade de madeira de eucalipto citriodora (Corymbia citriodora (Hook.) KD Hill and LAS Johnson) tratada com CCA em ambiente amazônico. Acta Amazonica 42:49–58CrossRefGoogle Scholar
  10. ATSDR—Agency for Toxic Substances and Disease Registry (2000) Toxicological Profile for Arsenic (Update) 2000. AtlantaGoogle Scholar
  11. ATSDR—Agency for Toxic Substances and Disease Registry (2010) CERCLA priority list of hazardous substances for 2007. Centers for Disease Control, AtlantaGoogle Scholar
  12. Azevedo LS, Pestana IA, Rocha ARM, Meneguelli-Souza AC, Lima CAI, Almeida MG, Bastos WR, Souza CMM (2018a) Drought promotes increases in total mercury and methylmercury concentrations in fish from the lower Paraíba do Sul River, southeastern Brazil. Chemosphere 202:483–490CrossRefGoogle Scholar
  13. Azevedo LS, Pestana IA, Meneguelli-Souza AC et al (2018b) Risk of exposure to total and inorganic arsenic by meat intake among different age groups from Brazil: a probabilistic assessment. Environ Sci Pollut Res.
  14. Barragne-Bigot P (2004) Contribución al estudio de cinco zonas contaminadas naturalmente por arsénico en Nicaragua. UNICEF, ManaguaGoogle Scholar
  15. Batista BL, Souza JM, De Souza SS, Barbosa F (2011) Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption. J Hazard Mater 191:342–348CrossRefGoogle Scholar
  16. Bhattacharya P, Jacks G, Ahmed KM, Routh J, Khan AA (2002) Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bull Environ Contam Toxicol 69:45–538CrossRefGoogle Scholar
  17. Borba RP, Figueiredo BR, Matschullat J (2003) Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environ Geol 44:39–52CrossRefGoogle Scholar
  18. Borba RP, Figueiredo BR, Cavalcanti JA (2004) Arsênio na água subterrânea em Ouro Preto e Mariana, Quadrilátero Ferrífero (MG). REM Rev Esc Minas Ouro Preto 57:45–51CrossRefGoogle Scholar
  19. Bundschuh J, Litter MI, Parvez F, Román-Ross G, Nicolli HB, Jean JS, Liu CW, López D, Armienta MA, Guilherme LR, Cuevas AG, Cornejo L, Cumbal L, Toujaguez R (2012) One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries. Sci Total Environ 429:2–35CrossRefGoogle Scholar
  20. Burger J, Jeitner C, Schneider L, Vogt R, Gochfeld M (2010) Arsenic, cadmium, chromium, lead, mercury, and selenium levels in blood of four species of turtles from the amazon in Brazil. J Toxicol Environ Health Part A 73:33–40CrossRefGoogle Scholar
  21. Caldas D, Pestana IA, Almeida MG, Henry FC, Salomão MSMB, Souza CMM (2016) Risk of ingesting As, Cd, and Pb in animal products in north Rio de Janeiro state, Brazil. Chemosphere 164:508–515CrossRefGoogle Scholar
  22. Campos V (2002) Arsenic in groundwater affected by phosphate fertilizers at São Paulo, Brazil. Environ Geol 42:83–87CrossRefGoogle Scholar
  23. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397CrossRefGoogle Scholar
  24. Conama—Conselho Nacional do Meio Ambiente—N° 357 (2005) Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Publicação DOU n° 053, 58–63Google Scholar
  25. Corguinha APB, Souza GA, Gonçalves VC, Carvalho CA, Lima WEA, Martins FAD, Yamanaka CH, Francisco EAB, Guilherme LRG (2015) Assessing arsenic, cadmium, and lead contents in major crops in Brazil for food safety purposes. J Food Compos Anal 37:143–150CrossRefGoogle Scholar
  26. Costa RVF, Leite MGP, Mendonça FPC, Nalini HA Jr (2015) Geochemical mapping of arsenic in surface Waters and stream sediments of the Quadrilátero Ferrífero, Brazil. Geosciences 68:43–51Google Scholar
  27. CRA (2004) Diagnóstico ambiental do grau de contaminação da Baía de Todos os Santos por metais pesados e hidrocarbonetos. Consórcio BTS Hydros CH2MHILL. CRA, SalvadorGoogle Scholar
  28. Das D, Chatterjee A, Mandal BK, Samanta G, Chakraborti D (1995) Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world. Part 2: arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue biopsy of the affected people. Analyst 120:917–924CrossRefGoogle Scholar
  29. EFSA (2009) Scientific opinion: the potential risks arising from nanoscience nanotechnologies on food and feed safety. scientific opinion of the scientific committee (Question No EFSA-Q-2007-124a, adopted on 10 Feb 2009). EFSA J 958:1–39Google Scholar
  30. Figueiredo BR, Borba RP, Angélica RS (2007) Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109–118CrossRefGoogle Scholar
  31. Freire C, Koifman RJ, Fujimoto D, Souza VCO, Barbosa F Jr, Koifman S (2015) Reference values of cadmium, arsenic and manganese in blood and factors associated with exposure levels among adult population of Rio Branco, Acre, Brazil. Chemosphere 128:70–78CrossRefGoogle Scholar
  32. George CM, Sima L, Arias M, Mihalic J, Cabrera LZ, Danz D, Checkley W, Gilman RH (2014) Arsenic exposure in drinking water: an unrecognized health threat in Peru. Bull WHO 92:565–572Google Scholar
  33. Gonçalves JAC, Lena JC, Paiva JF, Nalini HAJ, Pereira JC (2007) Arsenic in the groundwater of Ouro Preto (Brazil): its temporal behavior as influenced by the hydric regime and hydrogeology. Environ Geol 53:785–793CrossRefGoogle Scholar
  34. Grosbois C, Schäfer J, Bril H, Blanc G, Bossy A (2009) Deconvolution of trace element (As, Cr, Mo, Th, U) sources and pathways to surface waters of a gold mining-influenced watershed. Sci Total Environ 407:2063–2076CrossRefGoogle Scholar
  35. Guerequiz R, Mañay N, Goso-Aguilar C, Bundschuh J, Fernández-Turiel JL, García-Vallés M, Pérez C (2007) Hidrogeoquímica de metales tóxicos: riesgo ambiental por presencia de arsénico en el Acuífero Raigón, San José (Uruguay), Brazilian Congress of GeochemistryGoogle Scholar
  36. Hatje V, de Andrade JB (eds) (2009) Baía de Todos os Santos: aspectos oceanográficos. Edufba, Salvador, p 304Google Scholar
  37. Hatje V, Macedo SM, Jesus RM, Cotrim G, Garcia KS, Queiroz AF, Ferreira SLC (2010) Inorganic As speciation and bioavailability in estuarine sediments of Todos os Santos Bay, BA, Brazil. Mar Pollut Bull 60:2225–2232CrossRefGoogle Scholar
  38. Herbel M, Fendorf S (2006) Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem Geol 228:16–32CrossRefGoogle Scholar
  39. Hoff NT, Figueira RCL, Abessa DMS (2015) Levels of metals, arsenic and phosphorus in sediments from two sectors of a Brazilian Marine Protected Area (Tupinambás Ecological Station). Mar Pollut Bull 91(2):403–409CrossRefGoogle Scholar
  40. Lotter JT, Lacey SE, Lopez R, Set GS, Khodadoust AP, Erdal S (2014) Groundwater arsenic in Chimaltenango, Guatemala. J Water Health 12(3):533–542CrossRefGoogle Scholar
  41. Kozak L, Skolasińska K, Niedzielski P (2012) Environmental impact of flood: the study of arsenic speciation in exchangeable fraction of flood deposits of Warta river (Poland) in determination of “finger prints” of the pollutants origin and the ways of the migration. Chemosphere 89:257–261CrossRefGoogle Scholar
  42. Lemos MJN, Nascimento ES, Maihara VA, Silva PSC, Landgraf M (2014) Evaluation of As, Se and Zn in octopus samples in different points of sales of the distribution chain in Brazil. J Radioanal Nucl Chem 301:573–579CrossRefGoogle Scholar
  43. Lima MO (2003) Caracterização geoquímica de arsênio total em águas e sedimentos em áreas de rejeitos de minérios de manganês no Município de Santana—Estado do Amapá, in: Figueiredo, BR., Borba RP, Angélica RS. Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109–118Google Scholar
  44. Machado CJS (2003) Recursos Hídricos e Cidadania no Brasil: Limites, Alternativas e Desafios. Ambiente & Sociedade—Vol. VI nº. 2 jul./dezGoogle Scholar
  45. Magalhães VF, Carvalho CEV, Pfeiffer WC (2001) Arsenic Contamination and Dispersion in the Engenho Inlet, Sepetiba Bay, SE, Brazil. Water Air Soil Pollut 129:83–90CrossRefGoogle Scholar
  46. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235CrossRefGoogle Scholar
  47. Matschullat J (2000) Arsenic in the geosphere: a review. Sci Total Environ 249:297–312CrossRefGoogle Scholar
  48. Matschullat J, Deschamps E (2007) Arsênio antropogênico e natural: um estudo em regiões do Quadrilátero Ferrífero. Fundação Estadual do Meio Ambiente, Belo HorizonteGoogle Scholar
  49. Mello JWV, Roy WR, Talbott JL, Stucki JW (2006) Mineralogy and arsenic mobility in arsenic-rich Brazilian. J Soils and Sediments 6:9–19CrossRefGoogle Scholar
  50. Mirlean N, Baisch P, Diniz D (2014) Arsenic in groundwater of the Paraiba do Sul delta, Brazil: an atmospheric source? Sci Total Environ 482:148–156CrossRefGoogle Scholar
  51. Morales KH, Ryan L, Kuo TL, Wu MM, Chen CJ (2000) Risk of internal cancers from arsenic in drinking water. Environ Health Perspect 108:655–661CrossRefGoogle Scholar
  52. Morgano MA, Martins MCT, Rabonato LC, Milani RF, Yotsuyanagi K, Rodriguez-Amaya DB (2010) Inorganic contaminants in bee pollen from southeastern Brazil. J Agric Food Chem 58:6876–6883CrossRefGoogle Scholar
  53. Nisti MB, Saueia CR, Malheiro LH, Groppo GH, Mazzilli BP (2015) Lixiviation of natural radionuclides and heavy metals in tropical soils amended with phosphogypsum. J Environ Radioactiv 144:120–126CrossRefGoogle Scholar
  54. Nobre RCM, Nobre MMM (2011) Groundwater and health implications of biofuels production. Environmental impact of biofuels. InTech, AlagoasGoogle Scholar
  55. O’Day PA (2006) Chemistry and mineralogy of arsenic. Elements 2:77–83CrossRefGoogle Scholar
  56. Rahman MM, Dong Z, Naidu R (2015) Concentrations of arsenic and other elements in groundwater of Bangladesh and West Bengal, India: potential cancer risk. Chemosphere 139:54–64CrossRefGoogle Scholar
  57. Rana T, Bera AK, Mondal DK, Das S, Bhattacharya D, Samanta S, Pan D, Das SK (2014) Arsenic residue in the products and by-products of chicken and duck: a possible concern of avian health and environmental hazard 47 to the population in West Bengal, India. Toxicol Ind Health 30:576–580CrossRefGoogle Scholar
  58. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391–396CrossRefGoogle Scholar
  59. Rezende PS, Costa LM, Windmöller CC (2015) Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil. Arch Environ Con Toxicol 68:588–602CrossRefGoogle Scholar
  60. Rocha GHO, Lini RS, Barbosa F Jr, Batista BL, Souza VCO, Nerilo SB, Bando E, Mossini SAG, Nishiyama P (2015) Exposure to heavy metals due to pesticide use by vineyard farmers. Int Arch Occup Environ Health 88:875–880CrossRefGoogle Scholar
  61. Rodriguez-Iruretagoiena A, Vallejuelo SFO, Gredilla A, Ramos CG, Oliveira ML, Arana G, Diego A, Madariaga JM, Silva LF (2015) Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Sci Total Environ 508:374–382CrossRefGoogle Scholar
  62. Rosolen V, De-Campos AB, Govone JS, Rocha C (2015) Contamination of wetland soils and floodplain sediments from agricultural activities in the Cerrado Biome (State of Minas Gerais, Brazil). Catena 128:203–210CrossRefGoogle Scholar
  63. Sakuma AMA (2004) Avaliação da exposição humana ao arsênio no Alto Vale do Ribeira, Brasil. 196 pp (Thesis). In: Figueiredo BR, Borba RP, Angélica RS. Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109-118Google Scholar
  64. Santos ECO, Jesus IM, Brabo ES, Fayal KF, Lima MO (2003) Exposição ao mercúrio e ao arsênio em estados da Amazônia: síntese dos estudos do Instituto Evandro Chagas/FUNASA. Rev Bras de Epidemiol São Paulo 6:171–185CrossRefGoogle Scholar
  65. Santos MJ, Tarley CRT, Cunha I, Zapelini I, Galunin E, Bleinroth D, Vieira I, Abrão T (2015) Leachability of major and minor elements from soils and sediments of an abandoned coal mining area in Southern Brazil. Environ Monit Assess 187:1–13CrossRefGoogle Scholar
  66. Silva YJAB, Nascimento CWA, Cantalice JRB, Silva YJAB, Cruz CMCA (2015) Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environ Monit Assess 187:1–10CrossRefGoogle Scholar
  67. Simpson S, Sherriff BL, Van Gulck J, Khozhina E, Londry K, Sidenko N (2011) Source, attenuation and potential mobility of arsenic at New Britannia Mine, Snow Lake, Manitoba. Appl Geochem 26:1843–1854CrossRefGoogle Scholar
  68. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural Waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  69. Souza RV, Garbossa LHP, Campos CJA, Vianna LDN, Vanz A, Rupp GS (2016) Metals and pesticides in commercial bivalve mollusc production areas in the North and South Bays, Santa Catarina (Brazil). Mar Poll Bull 105:377–384CrossRefGoogle Scholar
  70. Sracek O, Armienta MA, Rodríguez R, Villaseñor G (2010) Discrimination between diffuse and point sources of arsenic at Zimapán, Hidalgo state, Mexico. J Environ Monit 12:329–337CrossRefGoogle Scholar
  71. Sullivan KA, Aller RC (1996) Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim Cosmochim Ac 60(9):1465–1477CrossRefGoogle Scholar
  72. Takamori AY, Figueiredo BR (2002) Monitoramento da qualidade de água do rio Ribeira de Iguape para arsênio e metais pesados. In: Figueiredo BR, Borba RP, Angélica RS. Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109–118Google Scholar
  73. Tong J, Guo H, Wei C (2014) Arsenic contamination of the soil-wheat system irrigated with high arsenic groundwater in the Hetao Basin, Inner Mongolia, China. Sci Total Environ 496:479–487CrossRefGoogle Scholar
  74. Toujague RR (1999) Arsênio e metais associados na região Aurífera do Piririca, Vale do Ribeira, São Paulo, Brasil. In: Figueiredo BR, Borba RP, Angélica RS. Arsenic occurrence in Brazil and human exposure. Environ Geochem Health 29:109–118Google Scholar
  75. U.S. EPA (1988) Special report of inorganic arsenic: skin cancer; nutritional essentiality. EPA 625/3-87/013. Washington, DC: U.S. Environmental Protection AgencyGoogle Scholar
  76. Wang SX, Wang ZH, Cheng XT, Li J, Sang ZP, Zhang XD, Han LL, Qiao XY, Wu ZM, Wang ZQ (2007) Arsenic and fluoride exposure in drinking water: children’s IQ and growth in Shanyin county, Shanxi province, China. Environ Health Perspect 115:643–647CrossRefGoogle Scholar
  77. WHO (2002) Report of the 34th session of the codex committee on food additives and contaminants. Joint FAO/WHO Food Standards Programme, Codex Alimentaris Commission, ALINORM 03/12, FAO, Rome, ItalyGoogle Scholar
  78. Yanez J, Fierro V, Mansilla H, Figuero L, Cornejo L, Barnes RM (2005) Arsenic speciation in human hair: a new perspective for epidemiological assessment in chronic arsenicism. J Environ Monit 7:1335–1341CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Annaliza Carvalho Meneguelli de Souza
    • 1
  • Marcelo Gomes de Almeida
    • 1
  • Inácio Abreu Pestana
    • 1
  • Cristina Maria Magalhães de Souza
    • 1
  1. 1.Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia-Avenida Alberto LamegoUniversidade Estadual do Norte FluminenseCampos dos GoytacazesBrazil

Personalised recommendations