Chemical Constituents of Carbonaceous and Nitrogen Aerosols over Thumba Region, Trivandrum, India

  • Prashant HegdeEmail author
  • Kimitaka Kawamura


Aerosol filter samples collected at a tropical coastal site Thumba over Indian region were analysed for water-soluble ions, total carbon and nitrogen, organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon/nitrogen and their sources for different seasons of the year. For the entire study period, the order of abundance of ions showed the dominance of secondary ions, such as SO4 2−, NO3 , and NH4 +. On average, Mg2+ (56%), K+ (11%), SO4 2− (8.8%), and Ca2+ (8.1%) contributions were from maritime influence. There was significant chloride depletion due to enhanced levels of inorganic acids, such as SO4 2− and NO3 . Total carbon contributed 21% of the aerosol total suspended particulate matter in which 85% is organic carbon. Primary combustion-generated carbonaceous aerosols contributed 41% of aerosol mass for the entire study period. High average ratios of OC/EC (5.5 ± 1.8) and WSOC/OC (0.38 ± 0.11) suggest that organic aerosols are predominantly comprised of secondary species. In our samples, major fraction (89 ± 9%) was found to be inorganic nitrate in total nitrogen (TN). Good correlations (R 2 ≥ 0.82) were observed between TN with NO3 plus NH4 +, indicating that nitrate and ammonium ions account for a significant portion of TN. The temporal variations in the specific carbonaceous aerosols and air mass trajectories demonstrated that several pollutants and/or their precursor compounds are likely transported from north western India and the oceanic regions.



This study was partly supported by Japan Society for the Promotion of Science (JSPS) through grant-in-aid Nos. 19204055 and 24221001. We also appreciate the financial support of a JSPS fellowship to P. H., during which the author was on sabbatical from Indian Space Research Organisation (ISRO), Government of India.


  1. Aggarwal SG, Kawamura K (2008) Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. J Geophys Res 113(D14):301. doi: 10.1029/2007JD009365 CrossRefGoogle Scholar
  2. Agnihotri R et al (2011) Stable carbon and nitrogen isotopic composition of bulk aerosols over India and northern Indian Ocean. Atmos Environ 45:2828–2835CrossRefGoogle Scholar
  3. Anderson TL, Charlson RJ, Schwartz SE, Knutti R, Boucher O, Rodhe H, Heintzenberg J (2003) Climate forcing by aerosols. A hazy picture. Science 300:1103–1104CrossRefGoogle Scholar
  4. Andreae MO, Atlas E, Cachier H, Cofer WR III, Harris GW, Helas G, Koppmann R, Lacaux JP, Ward DE (1996) Trace gas and aerosol emissions from Savanna fires. In: Levine JS (ed) Biomass burning and global change. MIT Press, Cambridge, pp 278–295Google Scholar
  5. Ball WP et al (2003) Bulk and size-segregated aerosol composition observed during INDOEX (1999) overview of meteorology and continental impacts. J Geophys Res 108(D10):8001. doi: 10.1029/2002JD002467 CrossRefGoogle Scholar
  6. Begam GR, Viswanatha Vachaspati C, Nazeer Ahammed Y, Raghavendra Kumar K, Reddy RR, Sharma SK, Saxena Mohit, Mandal TK (2016) Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ Sci Pollut Res. doi: 10.1007/s11356-016-7917-1 Google Scholar
  7. Bin Abas MR, Rahman NA, Omar N, Maah MJ, Abu Samah A, Oros DR, Otto A, Simoneit BRT (2004) Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmos Environ 38:4223–4241CrossRefGoogle Scholar
  8. Blando JD, Turpin BJ (2000) Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmos Environ 34:1623–1632CrossRefGoogle Scholar
  9. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology based global inventory of black and organic carbon emissions from combustion. J Geophys Res 109(D14):203. doi: 10.1029/2003JD00369 CrossRefGoogle Scholar
  10. Brasseur GP, Orlando JJ, Tyndall GS (1999) Atmospheric chemistry and global change. Oxford University Press, New York, p 654Google Scholar
  11. Cao JJ, Lee SC, Ho KF (2004) Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta region. China Atmos Environ 38(27):4447–4456CrossRefGoogle Scholar
  12. Cao JJ, Wu F, Chow JC, Lee SC, Li Y, Chen SW, An ZS, Fung KK, Watson JG, Zhu CS, Liu SX (2005) Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmos Chem Phys 5:3127–3137CrossRefGoogle Scholar
  13. Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou SC, Zhang LZ, Qi SH, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res 112:D22S11. doi: 10.1029/2006JD008205 CrossRefGoogle Scholar
  14. Ceburnis D et al (2011) Quantification of the carbonaceous matter origin in submicron marine aerosol by 13C and 14C isotope analysis. Atmos Chem Phys 11:8593–8606. doi: 10.5194/acp-11-8593-2011 CrossRefGoogle Scholar
  15. Chi JW, Li WJ, Zhang DZ, Zhang JC, Lin YT, Shen XJ, Sun JY, Chen JM, Zhang XY, Zhang YM, Wang WX (2015) Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere. Atmos Chem Phys 15:11341–11353. doi: 10.5194/acp-15-11341-2015 CrossRefGoogle Scholar
  16. Chow JC, Lowenthal DH, Chen LW, Wang X, Watson JG (2015) Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8:243–263CrossRefGoogle Scholar
  17. Chowdhury Z, Zheng M, Schauer JJ, Sheesley RJ, Salmon LG, Cass GR, Russell AG (2007) Speciation of ambient fine organic carbon particles and source apportionment of PM2.5 in Indian cities. J Geophys Res 112(D15):303. doi: 10.1029/2007JD008386 CrossRefGoogle Scholar
  18. Claeys M, Wang W, Vermeylen R, Kourtchev I, Chi XG, Farhat Y, Surratt JD, González YG, Sciare J, Maenhaut W (2010) Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006–2007. J Aerosol Sci 1:13–22CrossRefGoogle Scholar
  19. Cooke WF, Wilson JJN (1996) A global black carbon aerosol model. J Geophys Res 101(19):3951–9409Google Scholar
  20. Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1 × 1 fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J Geophys Res 104:22137–22162CrossRefGoogle Scholar
  21. Das PK (1986) Monsoons, fifth IMO lecture, WMO, No-613. World Meteorological Organisation, GenevaGoogle Scholar
  22. Dick WD, Saxena P, McMurry PH (2000) Estimation of water uptake by organic compounds in submicron aerosols measured during Southeastern Aerosol and Visibility Study. J Geophys Res 105:1471–1479CrossRefGoogle Scholar
  23. Draxler RR, Rolph GD (2010) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website (, NOAA Air Resour Lab, Silver Spring, MD
  24. Dunlea EJ, DeCarlo PF, Aiken AC, Kimmel JR, Peltier RE, Weber RJ, Tomlinson J, Collins DR, Shinozuka Y, McNaughton CS, Howell SG, Clarke AD, Emmons LK, Apel EC, Pfister GG, van Donkelaar A, Martin RV, Millet DB, Heald CL, Jimenez JL (2009) Evolution of Asian aerosols during transpacific transport in INTEX-B. Atmos Chem Phys 9:7257–7287. doi: 10.5194/acp-9-7257-2009 CrossRefGoogle Scholar
  25. Engling G, Zhang YN, Chan CY, Sang XF, Lin M, Ho KF, Li YS, Lin CY, Lee JJ (2011) Characterization and sources of aerosol particles over the southeastern Tibetan Plateau during the Southeast Asia biomass-burning season. Tellus B 63:117–128. doi: 10.1111/j1600-0889.2010.00512.x CrossRefGoogle Scholar
  26. Falkovich AH, Grabber ER, Schokolnik G, Rudich Y, Maenhaut W, Artaxo P (2005) Low molecular weight organic acids in aerosol particles from Rondonia, Brazil during the biomass-burning, transition and wet periods. Atmos Chem Phys 5:781–797CrossRefGoogle Scholar
  27. Favez O, Cachier H, Sciare J, Alfaro SC, El-Araby TM, Harhash MA, Abdelwahab MM (2008) Seasonality of major aerosol species and their transformations in Cairo megacity. Atmos Environ 42:1503–1516CrossRefGoogle Scholar
  28. Finkelstein DB, Pratt LM, Brassell SC (2006) Can biomass burning produce a globally significant carbon-isotope excursion in the sedimentary record? Earth and Planetary. Sci Lett 250:501–510Google Scholar
  29. Fisseha R et al (2009) Determination of primary and secondary sources of organic acids and carbonaceous aerosols using stable carbon isotopes. Atmos Environ 43:431–437CrossRefGoogle Scholar
  30. Galloway JN (2000) Nitrogen mobilization in Asia. Nutr Cycl Agroecosystem 57:1–12CrossRefGoogle Scholar
  31. George SK, Nair PR, Parameswaran K, Jacob S, Abraham A (2008) Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. J Geophys Res 113(D16):209. doi: 10.1029/2007JD009507 CrossRefGoogle Scholar
  32. George SK, Nair PR, Parameswaran K, Jacob S (2011) Wintertime chemical composition of aerosols at a rural location in the Indo-Gangetic Plains. J Atmos Solar Terres Phys 73(2011):1798–1809. doi: 10.1016/j.jastp.2011.04.005 CrossRefGoogle Scholar
  33. Guazzotti SA et al (2003) Characterization of carbonaceous aerosols outflow from India and Arabia: biomass/biofuel burning and fossil fuel combustion. J Geophys Res 108(D15):4485. doi: 10.1029/2002JD003277 CrossRefGoogle Scholar
  34. Gustafsson O, Krusa M, Zencak Z, Sheesley RJ, Granat L, Engstrom E, Praveen PS, Rao PSP, Leck C, Rodhe H (2009) Brown clouds over South Asia: biomass or fossil fuel combustion? Science 323:495–498. doi: 10.1126/science.1164857 CrossRefGoogle Scholar
  35. Habib G et al (2004) New methodology for estimating biofuel consumption for cooking: atmospheric emissions of black carbon and sulfur dioxide from India. Global Biogeochem Cycles 18(GB):3007. doi: 10.1029/2003GB002157 Google Scholar
  36. Hara K, Osada K, Matsunaga K, Iwasaka Y, Shibata T, Furuya K (2002) Atmospheric inorganic chlorine and bromine species in Arctic boundary layer of the winter/spring. J Geophys Res 107(D18):4361. doi: 10.1029/2001JD001008 CrossRefGoogle Scholar
  37. Hegde P, Kawamura K (2012) Seasonal variations of water-soluble organic carbon, dicarboxylicacids, ketoacids, and α-dicarbonyls in the central Himalayan aerosols. Atmos Chem Phys 12:6645–6665. doi: 10.5194/acp-12-6645-2012 CrossRefGoogle Scholar
  38. Hegde P, Sudheer AK, Sarin MM, Manjunatha BR (2007) Chemical characteristics of atmospheric aerosols over southwest coast of India. Atmos Environ 41:7751–7766CrossRefGoogle Scholar
  39. Heidam NZ (1982) Atmospheric aerosol factor models, mass and missing data. Atmos Environ 16:1923–1931CrossRefGoogle Scholar
  40. Hopkins RJ, Lewis K, Desyaterik Y, Wang Z, Tivanski AV, Arnott WP, Laskin A, Gilles MK (2007) Correlations between optical, chemical, and physical properties of biomass burn aerosols. Geophys Res Lett 34(L1):8806. doi: 10.1029/2007GL030502 Google Scholar
  41. Jacobson MZ (2001) Strong radiative heating due to the mising state of black carbon in atmospheric aerosols. Nature 409:695–697CrossRefGoogle Scholar
  42. Johansen AM, Siefert RL, Hoffmann MR (1999) Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: anions and cations. J Geophys Res 104:26325–26347CrossRefGoogle Scholar
  43. Jung J, Tsatsral B, Kim YJ, Kawamura K (2010) Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia during the cold winter of 2007 to 2008: dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. J Geophys Res 115:D22203. doi: 10.1029/2010JD014339 CrossRefGoogle Scholar
  44. Kawamura K et al (2004) Organic and inorganic compositions of marine aerosols from East Asia: seasonal variations of water-soluble dicarboxylic acids, major ions, total carbon and nitrogen, and stable C and N isotopic composition. Geochem Investig Earth Space Sci 9:243–265 A Tribute to Issac R Kaplan edited by RJ Hill Special Publication Geochemical Society Google Scholar
  45. Keene WC, Pszenny AAP, Galloway JN, Hawley ME (1986) Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J Geophys Res 91:6647–6658CrossRefGoogle Scholar
  46. Kim HS, Huha JB, Hopke PH, Holsenc TM, Yia SM (2007) Characteristics of the major chemical constituents of PM2.5 and smog events in Seoul, Korea in 2003 and 2004. Atmos Environ 41:6762–6770CrossRefGoogle Scholar
  47. Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer, part A: mechanisms. Int J Cancer 109:799–809CrossRefGoogle Scholar
  48. Kumar R et al (2011) Influences of the springtime northern Indian biomass burning over the central Himalayas. J Geophys Res 116(D19):302. doi: 10.1029/2010JD015509 Google Scholar
  49. Kumar A, Ram K, Ojha N (2016) Variations in carbonaceous species at a high-altitude site in western India: role of synoptic scale transport. Atmos Environ. doi: 10.1016/j.atmosenv.2015.07.039 Google Scholar
  50. Laskin A, Smith JS, Laskin J (2009) Molecular characterization of nitrogen-containing organic compounds in biomass burning aerosols using high-resolution mass spectrometry. Environ Sci Technol 43:3764–3771CrossRefGoogle Scholar
  51. Lee YN et al (2003) Air borne measurement of inorganic ionic components of fine aerosol particles using the particle-into liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P. J Geophys Res 108(D23):8646. doi: 10.1029/2002JD003265 CrossRefGoogle Scholar
  52. Lelieveld J et al (2001) The Indian Ocean Experiment: widespread air pollution from South and Southeast. Asia Sci 291:1031–1036Google Scholar
  53. Lim HJ, Turpin BJ (2002) Origins of primary and secondary organic aerosol in Atlanta: results of time-resolved measurements during the Atlanta supersite experiment. Environ Sci Technol 36:4489–4496. doi: 10.1021/Es0206487 CrossRefGoogle Scholar
  54. Liousse C, Penner JE, Chuang C, Walton JJ, Eddleman H, Cachier H (1996) A global three-dimensional study of carbonaceous aerosols. J Geophys Res 101(19):19411–19432CrossRefGoogle Scholar
  55. Mace KA, Artaxo P, Duce RA (2003) Water-soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons. J Geophys Res D108:4512. doi: 10.1029/2003JD003557 CrossRefGoogle Scholar
  56. Malm WC, Day DE, Carrico C, Kreidenweis SM, Collett JL Jr, McMeeking G, Lee T, Carrillo J, Schichtel B (2005) Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite aerosol characterization study. J Geophys Res 110(D14):302. doi: 10.1029/2004JD005494 CrossRefGoogle Scholar
  57. Martens CS, Wesolowsky JJ, Harris RC, Keifer R (1973) Chlorine loss from Puerto Rican and San Francisco Bay area marine aerosols. J Geophys Res 78(36):8778–8791CrossRefGoogle Scholar
  58. Mayol-Bracero OL, Guyon P, Graham B, Roberts G, Andreae MO, Decesari S, Facchini MC, Fuzzi S, Artaxo P (2002) Water-soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J Geophys Res 107(D20):8091. doi: 10.1029/2001JD000522 CrossRefGoogle Scholar
  59. Meinert DL, Winchester JW (1977) Chemical relationships in the north Atlantic marine aerosol. J Geophys Res 82(12):1778–1782CrossRefGoogle Scholar
  60. Miyazaki Y, Kondo Y, Takegawa N, Komazaki Y, Fukuda M, Kawamura K, Mochida M, Okuzawa K, Weber RJ (2006) Time-resolved measurements of water-soluble organic carbon in Tokyo. J Geophys Res 111(D23):206. doi: 10.1029/2006JD007125 CrossRefGoogle Scholar
  61. Miyazaki Y, Fu PQ, Kawamura K, Mizoguchi Y, Yamanoi K (2012) Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest. Atmos Chem Phys 12:1367–1376CrossRefGoogle Scholar
  62. Nair PR, George SK, Sunilkumar SV, Parameswaran K, Jacob S, Abraham A (2006) Chemical composition of aerosols over peninsular India during winter. Atmos Environ 40:6477–6493CrossRefGoogle Scholar
  63. Narayanan V (1967) An observational study of the sea breeze at an equatorial coastal station. Indian J Meteorol Geophys 18:497–504Google Scholar
  64. Neff JC, Holland EA, Dentener FJ, McDowell WH, Russell KM (2002) The origin, composition and rates of organic nitrogen deposition: a missing piece of the nitrogen cycle. Biogeochemistry 57(58):99–136CrossRefGoogle Scholar
  65. Neusub C, Gnauk T, Plewka A, Herrmann H, Quinn PK (2002) Carbonaceous aerosol over the Indian Ocean: OC/EC fractions and selected specifications from size-segregated onboard samples. J Geophys Res 107(D19):8031. doi: 10.1029/2001JD000327 CrossRefGoogle Scholar
  66. Novakov T et al (2000) Origin of carbonaceous aerosols over the tropical Indian Ocean: biomass burning or fossil fuels. Geophys Res Lett 27:4061–4064CrossRefGoogle Scholar
  67. Oglesby RJ, Marshall S, Tylor JA (1998) The climate effects of biomass burning: investigation with a global climate model. Environ Model Softw 14:253–259CrossRefGoogle Scholar
  68. Pachauri T, Singla V, Satsangi A et al (2013) Characterization of carbonaceous aerosols with special reference to episodic events at Agra, India. Atmos Res 128:98–110. doi: 10.1016/j.atmosres.2013.03.010 CrossRefGoogle Scholar
  69. Panda S et al (2016) Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Nat Hazards 80:1709–1728. doi: 10.1007/s11069-015-2049-3 CrossRefGoogle Scholar
  70. Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison R (2015) Characterization of ambient PM at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189CrossRefGoogle Scholar
  71. Park RJ, Jacob DJ, Chin M, Martin RV (2003) Sources of carbonaceous aerosols over the United States and implications for natural visibility. J Geophys Res 108(D12):4355. doi: 10.1029/2002JD003190 CrossRefGoogle Scholar
  72. Park RJ, Jacob DJ, Field BD, Yantosca RM, Chin M (2004) Natural and transboundary pollution influences on sulfate-nitrate ammonium aerosols in the United States: implications for policy. J Geophys Res 109(D15):204. doi: 10.1029/2003JD004473 CrossRefGoogle Scholar
  73. Park RJ et al (2005) Export efficiency of black carbon aerosol in continental outflow: global implications. J Geophys Res 110(D11):205. doi: 10.1029/2004JD005432 CrossRefGoogle Scholar
  74. Pavuluri CM, Kawamura K, Tachibana E, Swaminathan T (2010) Elevated nitrogen isotope ratios of tropical Indian aerosols from Chennai: implication for the origins of aerosol nitrogen in South and Southeast Asia. Atmos Environ 44:3597–3604CrossRefGoogle Scholar
  75. Pavuluri CM, Kawamura K, Aggarwal SG, Swaminathan T (2011) Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos Chem Phys 11:8215–8230CrossRefGoogle Scholar
  76. Penner JE, Eddleman H, Novakov T (1993) Towards the development of a global inventory for black carbon emissions. Atmos Environ 27(A):1277–1295CrossRefGoogle Scholar
  77. Pichlmayer F, Schöner W, Seibert P, Stichler W, Wagenbach D (1998) Stable isotope analysis for characterization of pollutants at high elevation alpine sites. Atmos Environ 32:4075–4085CrossRefGoogle Scholar
  78. Pipal AS, Tiwarz S, Satsangi PG, Taneja A, Bisth DS, Srivastava AK, Srivastava MK (2014) Sources and characteristics of carbonaceous aerosols at Agra “World heritage site” and Delhi “capital city of India. Environ Sci Pollut Res 21:8678–8691CrossRefGoogle Scholar
  79. Prakash JWJ, Ramachandran R, Nair KN, Gupta SK, Kunhikrishnan PK (1992) On the structure of sea breeze front effects observed near the coast line of Thumba, India. Bound Layer Meteorol 59:111–124CrossRefGoogle Scholar
  80. Ram K, Sarin MM (2009) Absorption coefficient and site-specific mass absorption efficiency of elemental carbon (EC) in atmospheric aerosols over urban, rural and high-altitude sites in India. Environ Sci Technol 43:8233–8239CrossRefGoogle Scholar
  81. Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98CrossRefGoogle Scholar
  82. Ram K, Sarin MM, Tripathi SN (2010) A 1-year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: characterization, sources and temporal variability. J Geophys Res 115(D24):313. doi: 10.1029/2010JD014188 CrossRefGoogle Scholar
  83. Ramanathan V et al (2001) Indian Ocean Experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. J Geophys Res 106(28):28371–28398CrossRefGoogle Scholar
  84. Rastogi N, Sarin MM (2005) Long-term characterization of ionic species in aerosols from urban and high-altitude sites in western India: role of mineral dust and anthropogenic sources. Atmos Environ 39:5541–5554CrossRefGoogle Scholar
  85. Rastogi N, Sarin MM (2009) Quantitative chemical composition and characteristics of aerosols over western India. One-year record of temporal variability. Atmos Environ 43:3481–3488CrossRefGoogle Scholar
  86. Reddy MS, Venkataraman C (1999) Direct radiative forcing from anthropogenic carbonaceous aerosols over India. Curr Sci 76(7):1005–1011Google Scholar
  87. Reddy MS, Venkataraman C (2002) A 0.25° × 0.25° inventory of aerosol and sulfur dioxide emissions from India: II. Biomass combustion. Atmos Environ 36:699–712CrossRefGoogle Scholar
  88. Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res 112(D21):307. doi: 10.1029/2006JD008150 CrossRefGoogle Scholar
  89. Rolph GD (2010) Real-time Environmental Applications and display system (READY) website ( NOAA Air Resour Lab Silver Spring, MD
  90. Ruellan S, Cachier H (2001) Characterisation of fresh particulate vehicular exhausts near a Paris high flow road. Atmos Environ 35:453–468CrossRefGoogle Scholar
  91. Saarikoski S, Timonen H, Saarnio K, Aurela M, Jarvi L, Keronen P, Kerminen VM, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295CrossRefGoogle Scholar
  92. Safai PD, Raju MP, Rao PSP, Pandithurai G (2014) Characterization of carbonaceous aerosols over the urban tropical location and a new approach to evaluate their climatic importance. Atmos Environ 92:493–500. doi: 10.1016/j.atmosenv.2014.04.055 CrossRefGoogle Scholar
  93. Sandradewi J, Prévôt ASH, Szidat S, Perron N, Rami Alfarra M, Lanz VA, Weingartner E, Baltensperger U (2008) Using aerosol light absorption measurements for the quantitative determination of wood burning and Traffic emission contributions to particulate matter. Environ Sci Technol 42(9):3316–3323CrossRefGoogle Scholar
  94. Sandrini S, Fuzzi S, Piazzalunga A et al (2014) Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmos Environ 99:587–598CrossRefGoogle Scholar
  95. Satheesh SK (2012) Atmospheric chemistry and climate. Curr Sci 102(3):426–439Google Scholar
  96. Saxena P, Hildemann LM (1996) Water-soluble organics in atmospheric particles. A critical review of the literature and application of thermodynamics to identify candidate compounds. J Atmos Chem 24:57–109CrossRefGoogle Scholar
  97. Seto S, Oohara M, Ikeda Y (2000) Analysis of precipitation chemistry at a rural site in Hiroshima Prefecture, Japan. Atmos Environ 34:621–628CrossRefGoogle Scholar
  98. Shaw GE (1991) Aerosol chemical components in Alaska air masses 2. Sea salt and marine product. J Geophys Res 96(B6):22369–22372CrossRefGoogle Scholar
  99. Shrestha G, Traina SJ, Swanston CW (2010) Black carbon’s properties and role in the environment: a comprehensive review. Sustainability 2(1):294–320CrossRefGoogle Scholar
  100. Shubhankar B, Ambade B (2016) Chemical characterization of carbonaceous carbon from industrial and semi urban site of eastern India. SpringerPlus 5(837):1–17. doi: 10.1186/s40064-016-2506-9 Google Scholar
  101. Simeonov V, Kalina M, Tsakovski S, Puxbaum H (2003) Multivariate statistical study of simultaneously monitored cloud water, aerosol and rainwater data from different elevation levels in an alpine valley (Achenkirch, Tyrol, Austria). Talanta 61:519–528CrossRefGoogle Scholar
  102. Simoneit BRT, Rushdi AI, Bin Abas MR, Didyk BM (2003) Alkyl amides and nitriles as novel tracers for biomass burning. Environ Sci Technol 37:16–21CrossRefGoogle Scholar
  103. Singh N, Mhawish A, Deboudt K, Singh RS, Banerjee T (2017) Organic aerosols over Indo-Gangetic Plain: sources, distributions and climatic implications. Atmos Environ 157:69–74CrossRefGoogle Scholar
  104. Srivastava AK, Bisht DS, Ram K et al (2014) Characterization of carbonaceous aerosols over Delhi in Ganga basin: seasonal variability and possible sources. Environ Sci Pollut Res Int 21(14):8610–8619CrossRefGoogle Scholar
  105. Stone EA, Schauer JJ, Pradhan BB, Dangol PM, Habib G, Venkataraman C, Ramanathan V (2010) Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas. J Geophys Res 115(D06):301. doi: 10.1029/2009JD011881 Google Scholar
  106. Streets DG et al (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21):8809. doi: 10.1029/2002JD003093 CrossRefGoogle Scholar
  107. Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35(1):602–610CrossRefGoogle Scholar
  108. Venkataraman C, Reddy CK, Josson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India during the INDOEX-IFP (1999). Atmos Environ 36(12):1979–1991CrossRefGoogle Scholar
  109. Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochem Cycles. doi: 10.1029/2005GB002547 Google Scholar
  110. Viana M, Maenhaut W, ten Brink HM, Chi X, Weijers E, Querol X, Alastuey A, Mikuska P, Vecera Z (2007) Comparative analysis of organic and elemental carbon concentrations in carbonaceous aerosols in three European cities. Atmos Environ 41:5972–5983CrossRefGoogle Scholar
  111. Wang G, Xie M, Hu S, Gao S, Tachibana E, Kawamura K (2010) Dicarboxylic acids, metals and isotopic compositions of C and N in atmospheric aerosols from inland China: implications for dust and coal burning emission and secondary aerosol formation. Atmos Chem Phys 10:6087–6096. doi: 10.5194/acp-10-6087-2010 CrossRefGoogle Scholar
  112. Wang L, Zhou X, Ma Y, Cao Z, Wu R, Wang W (2017) Carbonaceous aerosols over China-review of observations, emissions and climate forcing. Environ Sci Pollut Res. doi: 10.1007/s11356-015-5398-2 Google Scholar
  113. Wolff GT, Groblicki PJ, Cadle SH, Countess RJ (1982) Particulate carbon at various locations in the United States. In: Wolff T, Klimisch RL (eds) Particulate carbon atmospheric life cycle. Plenum, New York, pp 297–315CrossRefGoogle Scholar
  114. Yao XH, Zhang L (2012) Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmos Environ 46:189–194CrossRefGoogle Scholar
  115. Yao X, Fang M, Chan CK (2003) The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmos Environ 37:743–751CrossRefGoogle Scholar
  116. Yu XY, Cary RA, Laulainen NS (2009) Primary and secondary organic carbon downwind of Mexico City. Atmos Chem Phys 9:6793–6814. doi: 10.5194/acp-9-6793-2009 CrossRefGoogle Scholar
  117. Yubero E, Galindo N, Nicolás JF et al (2014) Carbonaceous aerosols at an industrial site in Southeastern Spain. Air Qual Atmos Health 7(3):263–271CrossRefGoogle Scholar
  118. Zhang Q, Anastasio C, Jimenez-Cruz M (2002) Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California. J Geophys Res 107(D11):4112. doi: 10.1029/2001JD000870 CrossRefGoogle Scholar
  119. Zhang XY, Wang YQ, Zhang XC, Guo W, Gong SL, Zhao P, Jin JL (2008) Carbonaceous aerosol composition over various regions of China during (2006). J Geophys Res 113(D14):111. doi: 10.1029/2007JD009525 CrossRefGoogle Scholar
  120. Zhang F, Zhao J, Chen J, Xu Y, Lingling XuL (2011) Pollution characteristics of organic and elemental carbon in PM2:5 in Xiamen, China. J Environ Sci 23(8):1342–1349CrossRefGoogle Scholar
  121. Zhao S, Ming J, Sun J et al (2013) Observation of carbonaceous aerosols during 2006–2009 in Nyainqêntanglha Mountains and the implications for glaciers. Environ Sci Pollut Res Int 20(8):5827–5838CrossRefGoogle Scholar
  122. Zhou S, Wang Z, Gao R et al (2012) Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China. Atmos Environ 63:203–212CrossRefGoogle Scholar
  123. Ziemba LD, Fischer E, Griffin RJ, Talbot RW (2007) Aerosol acidity in rural New England: temporal trends and source region analysis. J Geophys Res 112(D10):S22. doi: 10.1029/2006JD007605 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Space Physics LaboratoryVikram Sarabhai Space CentreTrivandrumIndia
  2. 2.Institute of Low Temperature ScienceHokkaido UniversitySapporoJapan
  3. 3.Chubu Institute for Advanced StudiesChubu UniversityKasugaiJapan

Personalised recommendations