Advertisement

Size Distribution of Chlorinated Polycyclic Aromatic Hydrocarbons in Atmospheric Particles

  • Kensaku KakimotoEmail author
  • Haruna Nagayoshi
  • Yoshimasa Konishi
  • Keiji Kajimura
  • Takeshi Ohura
  • Takeshi Nakano
  • Mitsuhiko Hata
  • Masami Furuuchi
  • Ning Tang
  • Kazuichi Hayakawa
  • Akira Toriba
Article

Abstract

The particle size distribution of chlorinated polycyclic aromatic hydrocarbons (ClPAHs) in particulate matter (PM) in Japan is examined for the first time. PM was collected using a PM0.1 air sampler with a six-stage filter. PM was collected in October 2014 and January 2015 to observe potential seasonal variation in the atmospheric behavior and size of PM, including polycyclic aromatic hydrocarbons (PAHs) and ClPAHs. We found that the concentration of PAHs and ClPAHs between 0.5–1.0 μm and 1.0–2.5 μm markedly increase in January (i.e., the winter season). Among the ClPAHs, 1-ClPyrene and 6-ClBenzo[a]Pyrene were the most commonly occurring compounds; further, approximately 15% of ClPAHs were in the nanoparticle phase (<0.1 μm). The relatively high presence of nanoparticles is a potential human health concern because these particles can easily be deposited in the lung periphery. Lastly, we evaluated the aryl hydrocarbon receptor (AhR) ligand activity of PM extracts in each size fraction. The result indicates that PM < 2.5 μm has the strong AhR ligand activity.

Keywords

PAHs Atmospheric Particle Aryl Hydrocarbon Receptor Ligand Aryl Hydrocarbon Receptor Ligand Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. 16K09119.

Supplementary material

244_2016_327_MOESM1_ESM.pdf (764 kb)
Supplementary material 1 (PDF 764 kb)

References

  1. Allen JO, Dookeran NM, Smith KA, Sarofim AF, Taghizadeh K, Lafleur AL (1996) Measurement of polycyclic aromatic hydrocarbons associated with size-segregated atmospheric aerosols in Massachusetts. Environ Sci Technol 30:1023–1031. doi: 10.1021/es950517o CrossRefGoogle Scholar
  2. Bhatia AL, Tausch H, Stehlik G (1987) Mutagenicity of chlorinated polycyclic aromatic compounds. Ecotoxicol Environ Saf 14:48–55. doi: 10.1016/0147-6513(87)90082-0 CrossRefGoogle Scholar
  3. Bolch WE, Huston TE, Farfán EB, Vernetson WG, Bolch WE (2003) Influences of parameter uncertainties within the ICRP-66 respiratory tract model: particle clearance. Health Phys 84:421–435CrossRefGoogle Scholar
  4. Brook RD (2008) Cardiovascular effects of air pollution. Clin Sci 115:175–187. doi: 10.1042/CS20070444 CrossRefGoogle Scholar
  5. Cheng Y, Lee S, Gu Z, Ho K, Zhang Y, Huang Y, Chow JC, Watson JG, Cao J, Zhang R (2015) PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 18:96–104. doi: 10.1016/j.partic.2013.10.003 CrossRefGoogle Scholar
  6. Colmsjö A, Rannug A, Rannug U (1984) Some chloro derivatives of polynuclear aromatic hydrocarbons are potent mutagens in Salmonella typhimurium. Mutat Res 135:21–29. doi: 10.1016/0165-1218(84)90144-7 CrossRefGoogle Scholar
  7. Furuuchi M, Eryu K, Nagura M, Hata M, Kato T, Tajima N, Sekiguchi K, Ehara K, Seto T, Otani Y (2010) Development and performance evaluation of air sampler with inertial filter for nanoparticle sampling. Aerosol Air Qual Res 10:185–192. doi: 10.4209/aaqr.2009.11.0070 Google Scholar
  8. Hinds WC (1999) Aerosol technology, 2nd edn. Wiley, New York. ISBN 0-471-19410-7Google Scholar
  9. Horii Y, Ok G, Ohura T, Kannanct K (2008) Occurrence and profiles of chlorinated and brominated polycyclic aromatic hydrocarbons in waste incinerators. Environ Sci Technol 42:1904–1909. doi: 10.1021/es703001f CrossRefGoogle Scholar
  10. Kakimoto K, Nagayoshi H, Konishi Y, Kajimura K, Ohura T, Hayakawa K, Toriba A (2014) Atmospheric chlorinated polycyclic aromatic hydrocarbons in East Asia. Chemosphere 111:40–46. doi: 10.1016/j.chemosphere.2014.03.072 CrossRefGoogle Scholar
  11. Kakimoto K, Nagayoshi H, Inazumi N, Tani A, Konishi Y, Kajimura K, Ohura T, Nakano T, Tang N, Hayakawa K, Toriba A (2015) Identification and characterization of oxidative metabolites of 1-chloropyrene. Chem Res Toxicol 28:1728–1736. doi: 10.1021/acs.chemrestox.5b00173 CrossRefGoogle Scholar
  12. Kawanaka Y, Matsumoto E, Sakamoto K, Wang N, Yun S-J (2004) Size distributions of mutagenic compounds and mutagenicity in atmospheric particulate matter collected with a low-pressure cascade impactor. Atmos Environ 38:2125–2132. doi: 10.1016/j.atmosenv.2004.01.021 CrossRefGoogle Scholar
  13. Kitazawa A, Amagai T, Ohura T (2006) Temporal trends and relationships of particulate chlorinated polycyclic aromatic hydrocarbons and their parent compounds in urban air. Environ Sci Technol 40:4592–4598. doi: 10.1021/es0602703 CrossRefGoogle Scholar
  14. Krewski D (2009) Evaluating the effects of ambient air pollution on life expectancy. N Engl J Med 360:413–415. doi: 10.1056/NEJMe0809178 CrossRefGoogle Scholar
  15. Ladji R, Yassaa N, Balducci C, Cecinato A (2014) Particle size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHS) in urban and industrial aerosol of Algiers, Algeria. Environ Sci Pollut Res Int 21:1819–1832. doi: 10.1007/s11356-013-2074-2 CrossRefGoogle Scholar
  16. Li Y-C, Yu JZ, Ho SSH, Schauer JJ, Yuan Z, Lau AKH, Louie PKK (2013) Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003. Atmos Res 120–21:88–98. doi: 10.1016/j.atmosres.2012.08.005 CrossRefGoogle Scholar
  17. Loomis D, Grosse Y, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K (2013) The carcinogenicity of outdoor air pollution. Lancet Oncol 14:1262–1263. doi: 10.1016/S1470-2045(13)70487-X CrossRefGoogle Scholar
  18. Mesquita SR, van Drooge BL, Oliveira E, Grimalt JO, Barata C, Vieira N, Guimarães L, Piña B (2015) Differential embryotoxicity of the organic pollutants in rural and urban air particles. Environ Pollut 206:535–542. doi: 10.1016/j.envpol.2015.08.008 CrossRefGoogle Scholar
  19. Miguel AH, Kirchstetter TW, Harley RA, Hering SV (1998) On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles. Environ Sci Technol 32:450–455. doi: 10.1021/es970566w CrossRefGoogle Scholar
  20. Offenberg JH, Baker JE (2002) The influence of aerosol size and organic carbon content on gas/particle partitioning of polycyclic aromatic hydrocarbons (PAHs). Atmos Environ 36:1205–1220. doi: 10.1016/S1352-2310(01)00427-7 CrossRefGoogle Scholar
  21. Ohura T, Kitazawa A, Amagai T, Makino M (2005) Occurrence, profiles, and photostabilities of chlorinated polycyclic aromatic hydrocarbons associated with particulates in urban air. Environ Sci Technol 39:85–91. doi: 10.1021/es040433s CrossRefGoogle Scholar
  22. Ohura T, Morita M, Makino M, Amagai T, Shimoi K (2007) Aryl hydrocarbon receptor-mediated effects of chlorinated polycyclic aromatic hydrocarbons. Chem Res Toxicol 20:1237–1241. doi: 10.1021/tx700148b CrossRefGoogle Scholar
  23. Ohura T, Fujima S, Amagai T, Shinomiya M (2008) Chlorinated polycyclic aromatic hydrocarbons in the atmosphere: seasonal levels, gas-particle partitioning, and origin. Environ Sci Technol 42:3296–3302. doi: 10.1021/es703068n CrossRefGoogle Scholar
  24. Ohura T, Sawada K, Amagai T, Shinomiya M (2009) Discovery of novel halogenated polycyclic aromatic hydrocarbons in urban particulate matters: occurrence, photostability, and AhR activity. Environ Sci Technol 43:2269–2275. doi: 10.1021/es803633d CrossRefGoogle Scholar
  25. Ohura T, Sakakibara H, Watanabe I, Shim WJ, Manage PM, Guruge KS (2015) Spatial and vertical distributions of sedimentary halogenated polycyclic aromatic hydrocarbons in moderately polluted areas of Asia. Environ Pollut 196:331–340. doi: 10.1016/j.envpol.2014.10.028 CrossRefGoogle Scholar
  26. Sankoda K, Kuribayashi T, Nomiyama K, Shinohara R (2013) Occurrence and source of chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) in tidal flats of the Ariake Bay, Japan. Environ Sci Technol 47:7037–7044. doi: 10.1021/es3044483 Google Scholar
  27. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteor Soc 96:2059–2077. doi: 10.1175/BAMS-D-14-00110.1 CrossRefGoogle Scholar
  28. Wu SP, Tao S, Liu WX (2006) Particle size distributions of polycyclic aromatic hydrocarbons in rural and urban atomosphere of Tianjin, China. Chemosphere 62:357–367. doi: 10.1016/j.chemosphere.2005.04.101 CrossRefGoogle Scholar
  29. Yang H-H, Chien S-M, Chao M-R, Lin C-C (2005) Particle size distribution of polycyclic aromatic hydrocarbons in motorcycle exhaust emissions. J Hazard Mater 125:154–159. doi: 10.1016/j.jhazmat.2005.05.019 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Kensaku Kakimoto
    • 1
    • 2
    Email author
  • Haruna Nagayoshi
    • 1
  • Yoshimasa Konishi
    • 1
  • Keiji Kajimura
    • 1
  • Takeshi Ohura
    • 3
  • Takeshi Nakano
    • 4
  • Mitsuhiko Hata
    • 5
  • Masami Furuuchi
    • 5
  • Ning Tang
    • 6
  • Kazuichi Hayakawa
    • 6
  • Akira Toriba
    • 2
  1. 1.Osaka Prefectural Institute of Public HealthOsakaJapan
  2. 2.Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
  3. 3.Department of Environmental Bioscience, Faculty of AgricultureMeijo UniversityNagoyaJapan
  4. 4.Research Center for Environmental PreservationOsaka UniversityOsakaJapan
  5. 5.Institute of Science and EngineeringKanazawa UniversityKanazawaJapan
  6. 6.Institute of Nature and Environmental TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations