Mercury and Selenium in Muscle and Target Organs of Scalloped Hammerhead Sharks Sphyrna lewini of the SE Gulf of California: Dietary Intake, Molar Ratios, Loads, and Human Health Risks

  • Magdalena E. Bergés-Tiznado
  • Fernando Márquez-Farías
  • Raúl E. Lara-Mendoza
  • Yassir E. Torres-Rojas
  • Felipe Galván-Magaña
  • Humberto Bojórquez-Leyva
  • Federico Páez-OsunaEmail author


Selenium and mercury were evaluated in muscle, liver, kidney, brain, and the stomach contents of juvenile scalloped hammerhead shark Sphyrna lewini. Se:Hg molar ratios were calculated. The average Hg levels in muscle ranged from 0.12 to 1.17 μg/g (wet weight); Hg was <0.39 μg/g in liver and kidneys and <0.19 μg/g in brain. The lowest value of Se was found in muscle (0.4 μg/g) and the highest in kidney (26.7 μg/g). An excess of Se over Hg was found, with Se:Hg molar ratios >1. Correlations were found for Hg in muscle with size, age, and weight, and also for Hg in liver with size, age, and weight. Hg in muscle was significantly positive correlated to Hg in brain as well as Hg in liver was correlated to Hg in kidney. The highest Hg in preys was for carangid fishes; scombrid and carangid fishes contributed with the highest Se levels. Results suggest that more than 98 % of the total Hg and 62 % of Se end up in muscle and might be affected by factors, such as geographical area, age, size, and feeding habits. The muscle of S. lewini should be consumed by people cautiously so as not to exceed the recommended intake per week.


Shark Species Provisional Tolerable Weekly Intake Spotted Seatrout Hammerhead Shark Scalloped Hammerhead Shark 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work received financial support from PAPIIT (Programa de Apoyo a Proyectos de Investigación e Innovación) IN208213 by Universidad Nacional Autónoma de México, DGIP-UAS (Dirección General de Investigación y Posgrado-Universidad Autónoma de Sinaloa) and from Proyecto CONACYT 204818. The authors thank R. Hernández-Gúzman, D. Sierra-Moreno, J.P. Mora-Carrillo, and K. Bergés-García for assistance with the figures, sampling, and samples processing.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Adams D, Sonne C, Basu N, Dietz R, Nam D, Leifsson P, Jensen A (2010) Mercury contamination in spotted seatrout, Cynoscion nebulosus: an assessment of liver, kidney, blood, and nervous system health. Sci Total Environ 408:5008–5816. doi: 10.1016/j.scitotenv.2010.08.019 CrossRefGoogle Scholar
  2. Anislao-Tolentino V, Gallardo-Cabello M, Amezcua-Linares F, Robinson-Mendoza C (2008) Age and growth of the scalloped hammerhead shark, Sphyrna lewini (Griffith & Smith, 1834) from the Southern coast of Sinaloa, México. Hidrobiológica 18:31–40Google Scholar
  3. Barrera-García A, O’Hara T, Galván-Magaña F, Méndez-Rodríguez LC, Castellini M, Zenteno-Savín T (2012) Oxidative stress indicators and trace elements in the blue shark (Prionace glauca) off the east coast of the Mexican Pacific Ocean. Comp Biochem Physiol C 156:59–66. doi: 10.1016/j.cbpc.2012.04.003 Google Scholar
  4. Barrera-García A, O’Hara T, Galván-Magaña F, Méndez-Rodríguez LC, Castellini M, Zenteno-Savín T (2013) Trace elements and oxidative stress indicator in the liver and kidney of the blue shark (Prionace glauca). Comp Biochem Physiol A 165:483–490. doi: 10.1016/j.cbpa.2013.01.024 CrossRefGoogle Scholar
  5. Berry M, Ralston N (2008) Mercury toxicity and the mitigating role of selenium. EcoHealth 5:456–459. doi: 10.1007/s10393-008-0204-y CrossRefGoogle Scholar
  6. Bizarro J, Smith W, Castillo-Géniz L, Ocampo-Torres L, Márquez-Farías F, Hueter R (2009) The seasonal importance of small coastal sharks and rays in the artisanal elasmobranch fishery of Sinaloa, Mexico. Panam J Aquat Sci 4(4):513–531Google Scholar
  7. Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017. doi: 10.1139/f92-113 CrossRefGoogle Scholar
  8. Branco V, Vale C, Canário J, Neves dos Santos M (2007) Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environ Pollut 150:373–380CrossRefGoogle Scholar
  9. Branco V, Canário J, Lu J, Holmgren A, Carvalho C (2012) Mercury and selenium interaction in vivo: effects on thioredoxin reductase and glutathione peroxidase. Free Radical Biol Med 52:781–793. doi: 10.1016/j.freeradbiomed.2011.12.002 CrossRefGoogle Scholar
  10. Branco V, Godhino-Santos A, Goncalves J, Lu J, Holmgren A, Carvalho C (2014) Mitochondrial thioredoxin reductase inhibition, selenium status and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radical Biol Med 73:95–105. doi: 10.1016/j.freeradbiomed.2014.04.030 CrossRefGoogle Scholar
  11. Burger J, Gochfeld M (2011) Mercury and selenium levels in 19 species of fish of New Jersey as function of species, size and season. Sci Total Environ 409:1418–1429. doi: 10.1016/j.scitotenv.2010.12.034 CrossRefGoogle Scholar
  12. Burger J, Gochfeld MN (2012) Selenium and mercury molar ratios in saltwater fish from New Jersey: individual and species variability complicate use in human health fish consumption advisories. Environ Res 114:12–23. doi: 10.1016/j.envres.2012.02.004 CrossRefGoogle Scholar
  13. Burger J, Gochfeld M (2013) Selenium and mercury molar ratios in commercial fish from New Jersey and Illinois: variation within species and relevance to risk communication. Food Chem Toxicol 57:235–245. doi: 10.1016/j.fct.2013.03.021 CrossRefGoogle Scholar
  14. Burger J, Gochfeld M, Jeitner C, Donio M, Pittfield T (2012) Interspecific and intraspecific variation in selenium:mercury molar ratios in saltwater fish from the Aleutians: potential protection on mercury toxicity by selenium. Sci Total Environ 431:46–56. doi: 10.1016/j.scitotenv.2012.05.024 CrossRefGoogle Scholar
  15. Burger J, Jeitner C, Donio M, Pittfield T, Gochfeld M (2013) Mercury and selenium levels, and selenium:mercury molar ratios of brain, muscle and other tissues in bluefish (Pomatomus saltatrix) from New Jersey, USA. Sci Total Environ 443:278–286. doi: 10.1016/j.scitotenv.2012.10.040 CrossRefGoogle Scholar
  16. Cabañero A, Madrid Y, Cámara C (2006) Selenium long-term administrations and its effect on mercury toxicity. J Agric Food Chem 54:4461–4468. doi: 10.1021/jf0603230 CrossRefGoogle Scholar
  17. CANAIVE (2012). How size is Mexico? Size matters. Cámara Nacional de la Industria del Vestido. Accessed 10 June 2014
  18. Cappon CJ, Smith JC (1982) Chemical form and distribution of mercury and selenium in edible seafood. J Anal Toxicol 6:10–21. doi: 10.1093/jat/6.1.10 CrossRefGoogle Scholar
  19. Cartamil F, Santana-Morales O, Escobedo-Olvera M, Kacev D, Castillo-Geniz L, Graham J, Rubin R, Sosa-Nishizaki O (2011) The artisanal elasmobranch fishery of the Pacific coast of Baja California, Mexico. Fish Res 108:393–403. doi: 10.1016/j.fishres.2011.01.020 CrossRefGoogle Scholar
  20. Caserta D, Graziano A, Monte G, Bordi G, Moscarini M (2013) Heavy metals and placental fetal-maternal barrier: a mini-review on the major concerns. Eur Rev Med Pharmacol Sci 17:2198–2206Google Scholar
  21. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation. 1st edition: Plymouth Marine Laboratory, Plymouth, UK, 144 pp. 2nd edition: PRIMER-E, Plymouth, UK, 172 ppGoogle Scholar
  22. Colwell R (2006) Estimates: statistical estimation of species richness and shared species from samples, version 8.
  23. Compagno L (1984) FAO Species Catalogue. Vol. 4. Sharks of the world. An annotated and illustrated catalogue of shark species known to date. Part 2. Carcharhiniformes. FAO Fisheries Synopsis (125) 4:251–655Google Scholar
  24. Cortés E (1999) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can J Fish Aquat Sci 54:726–738. doi: 10.1139/f96-316 CrossRefGoogle Scholar
  25. Damiano S, Papetti P, Menesatti P (2011) Accumulation of heavy metals to assess the health status of swordfish in a comparative analysis of Mediterranean and Atlantic areas. Mar Pollut Bull. doi: 10.1016/j.marpolbul.2011.04.028 Google Scholar
  26. Delshad ST, Mousavi SA, Islami HR, Pazira A (2012) Mercury concentration of the whitecheek shark, carcharhinus dussumieri (elasmobranchii, chondrichthyes), and its relation with length and sex. Panam J Aquat Sci 7:135–142Google Scholar
  27. EPA (2014) Mercury, fish consumption advice. U.S. Environmental Protection Agency. Accessed 24 January 2015
  28. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2010) Mercury and selenium bioaccumulation in the smooth hammerhead Shark, Sphyrna zygaena Linnaeus, from the Mexican Pacific Ocean. Bull Environ Contam Toxicol 84:488–491. doi: 10.1007/s00128-010-9966-3 CrossRefGoogle Scholar
  29. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2011) Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico. Biol Trace Elem Res 144:550–559. doi: 10.1007/s12011-011-9040-y CrossRefGoogle Scholar
  30. Ferry LA, Cailliet GM (1996) Sample size and data analysis: are we characterizing and comparing diet properly? In: Makinlay D, Shearer K (eds) Feeding ecology and nutrition in fish. Proceedings of the Symposium on the Feeding Ecology and Nutrition in fish, International Congress on the Biology of Fishes, San Francisco, California. American Fisheries Society, San Francisco California, pp 70–81Google Scholar
  31. Fisher W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacifico Centro-Oriental, volumen II: 686ppGoogle Scholar
  32. Froese R, Pauly D (2015) Fish base. Accessed 24 May 2013 and 15 August 2015
  33. García-Hernández J, Cadena-Cárdenas L, Bentancourt-Lozano M, García-de-la-Parra L, García-Rico L, Márquez-Farías F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicol Environ Chem 89(3):507–522. doi: 10.1080/02772240601165594 CrossRefGoogle Scholar
  34. Gelsleichter J, Walker C (2010) Pollutant exposure and Effects in sharks and their relatives. In: Carrier J, Musick J, Heithaus M (eds) Sharks and their relatives II biodiversity, adaptive physiology and conservation. CRC Press, Florida, pp 181–182Google Scholar
  35. Gochfeld M, Burger J, Jeitner C, Donio M, Pittfield T (2012) Seasonal, location and size variations in mercury and selenium levels in striped bass (Morone saxatilis) from New Jersey. Environ Res 112:8–19. doi: 10.1016/j.envres.2011.12.007 CrossRefGoogle Scholar
  36. Hurtado-Banda R, Gomez-Alvarez A, Márquez-Farías F, Cordoba-Figueroa M, Navarro-García G, Medina-Juárez L (2012) Total mercury in liver and muscle tissue of two coastal sharks from the northwest of Mexico. Bull Environ Contam Toxicol 88:971–975. doi: 10.1007/s00128-012-0623-x CrossRefGoogle Scholar
  37. Jardine T, Kidd K, O’Driscoll N (2013) Food web analysis reveals effects of pH on mercury bioaccumulation at multiple trophic levels in streams. Aquat Toxicol 132(133):46–52. doi: 10.1016/j.aquatox.2013.01.013 CrossRefGoogle Scholar
  38. Karimi R, Frisk M, Fisher N (2013) Contrasting Food Web Factor and Body size relationships with Hg and Se concentrations in marine biota. PLoS One. doi: 10.1371/journal.pone.0074695 Google Scholar
  39. Kehring H, Seixas T, Palermo E, Baêta A, Castelo-Branco C, Malm O, Moreira I (2009) The relationships between mercury and selenium in plankton and fish from a tropical food web. Environ Sci Pollut R 16:10–24. doi: 10.1007/s11356-008-0038-8 CrossRefGoogle Scholar
  40. Kojadinovic J, Potier M, Le Corre M, Cosson R, Bustamante P (2007) Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ Pollut 146:548–566. doi: 10.1016/j.envpol.2006.07.015 CrossRefGoogle Scholar
  41. Lowe C (2001) Metabolic rates of juvenile scalloped hammerhead sharks (Sphyrna lewini). Mar Biol 139:447–453. doi: 10.1007/s002270100585 Google Scholar
  42. Luoma S, Rainbow P (2008) Metal contamination in aquatic environments, science and lateral management. Cambridge University Press, Cambridge, pp 327–353Google Scholar
  43. Lyons K, Carlisle A, Preti A, Mull C, Blasius M, O’Sullivan J, Winkler C, Lowe C (2013) Effects of trophic ecology and habitat use on maternal transfer of contaminants in four species of young of the year lamniform sharks. Mar Environ Res 90:27–38. doi: 10.1016/j.marenvres.2013.05.009 CrossRefGoogle Scholar
  44. Maz-Courrau A, López-Vera C, Galván-Magaña F, Escobar-Sánchez O, Rosíles-Martínez R, Sanjuán-Muñoz A (2012) Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico. Bull Environ Contam Toxicol 88:129–134. doi: 10.1007/s00128-011-0499-1 CrossRefGoogle Scholar
  45. McMeans B, Arts M, Fisk A (2015) Impacts of food web structure and feeding behavior on mercury exposure in Greenland Sharks (Somniosus microcephalus). Sci Total Environ 509–510:216–225. doi: 10.1016/j.scitotenv.2014.01.128 CrossRefGoogle Scholar
  46. Nam D, Adams D, Reyier E, Basu N (2011) Mercury and selenium levels in lemon shark (Negaprion brevirostris) in relation to a harmful red tide event. Environ Monit Assess 176:549–559. doi: 10.1007/s10661-010-1603-4 CrossRefGoogle Scholar
  47. NOM (2011) NOM-242-SSA1-2009. Productos y Servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba. Diario Oficial de la Federación. Accessed 4 March 2015
  48. NRC-CNRC (2008) DOLT-4, Dogfish liver Certified Reference Material for Trace Metals. Ottawa: National Research Council Canada—Conseil National de Recherches CanadaGoogle Scholar
  49. Olsvik P, Amlund H, Saele O, Ellingsen S, Skjaerven K (2015) Impact of dietary selenium on methylmercury toxicity in juvenile Atlantic cod: a transcriptional survey. Chemosphere 120:199–205. doi: 10.1016/j.chemosphere.2014.06.036 CrossRefGoogle Scholar
  50. Parizek J, Ostadalova I (1967) The protective effect of small amounts of selenite in sublimate intoxication. Experientia 23:142–143. doi: 10.1007/BF02135970 CrossRefGoogle Scholar
  51. Peterson S, Ralston N, Peck D, Van Sickle JV, Robertson JD, Spate VL, Morris JS (2009) How might selenium moderate the toxic effects of mercury in stream fish of the western U.S.? Environ Sci Technol 43:3919–3925. doi: 10.1021/es803203g CrossRefGoogle Scholar
  52. Pethybridge H, Cossa D, Butler E (2010) Mercury in 16 demersal sharks from southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69:18–26. doi: 10.1016/j.marenvres.2009.07.006 CrossRefGoogle Scholar
  53. Pinkas, L, Oliphant M, Iverson L (1971) Food habits of Albacore Bluefin Tuna and Bonito in California waters. University of California. Accessed 4 May 2014
  54. Powell JH, Powell RE (2001) Trace elements in fish overlying subaqueous tailings in the tropical west Pacific. Water Air Soil Pollut 125:81–104. doi: 10.1023/A:1005211832691 CrossRefGoogle Scholar
  55. Ralston N, Blackwell J, Raymond L (2007) Importance of molar ratios in selenium-dependent protection against methylmercury toxicity. Biol Trace Elem Res 119:255–268. doi: 10.1007/s12011-007-8005-7 CrossRefGoogle Scholar
  56. Rice KM, Walker EM, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prev Med Public Health 47(2):74–83. doi: 10.3961/jpmph.2014.47.2.74 CrossRefGoogle Scholar
  57. Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bull Environ Contam Toxicol 74:294–300. doi: 10.1007/s00128-004-0583-x CrossRefGoogle Scholar
  58. Steel RG, Torrie JH (1989) Bioestadística: Principios y Procedimientos. McGraw-Hill; 622ppGoogle Scholar
  59. Storelli MM, Cuttone G, Marcotrigiano G (2011) Distribution of trace elements in the tissues of smooth hound Mustelus mustelus (Linnaeus, 1758) from the southern-eastern waters of Mediterranean Sea (Italy). Environ Monit Assess 174:271–281. doi: 10.1007/s10661-010-1456-x CrossRefGoogle Scholar
  60. Torres-Rojas Y, Hernández-Herrera A, Galván-Magaña F (2006) Feeding habits of the scalloped hammerhead shark, Sphyrna lewini, in Mazatlan waters, southern Gulf of California, Mexico. Cybium 30(4):85–90Google Scholar
  61. Torres-Rojas Y, Hernández-Herrera A, Galván-Magaña F, Alatorre-Ramírez V (2010) Stomach content analysis of juvenile, scalloped hammerhead shark Sphyrna lewini captured off the coast of Mazatlan, Mexico. Aquat Ecol 44:301–308. doi: 10.1007/s10452-009-9245-8 CrossRefGoogle Scholar
  62. Torres-Rojas Y, Hernández-Herrerra A, Ortega-García S, Soto-Jiménez M (2014) Feeding habits variability and trophic position of dolphinfish in waters south of the Baja California Peninsula, Mexico. T Am Fish Soc 143:528–542. doi: 10.1080/00028487.2013.866981 CrossRefGoogle Scholar
  63. Turoczy NJ, Laurenson JB, Allison G, Nishikawa M, Lambert DF, Smith C, Cottier JPE, Irvine SB, Stagnitti F (2000) Observations on metal concentrations in three species of shark (Deania calcea, Centroscymnus crepidater, and Centroscymnus owstoni) from southeastern Australian waters. J Agric Food Chem 48:4357–4364. doi: 10.1021/jf000285z CrossRefGoogle Scholar
  64. Wang A, Barber D, Pfeiffer C (2001) Protective effects of selenium against mercury toxicity in cultured Atlantic spotted dolphin (Stenella plagiodon) renal cells. Arch Environ Contam Toxicol 41:403–409. doi: 10.1007/s002440010266 CrossRefGoogle Scholar
  65. Watanabe C (2002) Modification of mercury toxicity by selenium: practical importance? Tohoku J Exp Med 196:71–77. doi: 10.1620/tjem.196.71 CrossRefGoogle Scholar
  66. Wetherbee B, Cortés E (2004) Food consumption and feeding habits. In: Carrier J, Musick J, Heithaus M (eds) Biology of sharks and their relatives, CRC Press, Florida, pp 232–237Google Scholar
  67. White W, Sommerville E (2010) Elasmobranchs of the tropical marine ecosystem. In: Carrier J, Musick J, Heithaus M (eds) Sharks and their relatives II biodiversity, adaptive physiology and conservation. CRC Press, Florida, pp 181–182Google Scholar
  68. WHO (2010) Methylmercury, evaluation of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), Word Health Organization. Accessed 15 August 2014
  69. Yang DY, Chen YW, Gunn JM, Belzile N (2008) Selenium and mercury in organisms: interactions and mechanisms. Environ Rev 16:71–92. doi: 10.1139/A08-001 CrossRefGoogle Scholar
  70. Zar J (1999) Biostatistical Analysis, 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Magdalena E. Bergés-Tiznado
    • 1
  • Fernando Márquez-Farías
    • 2
  • Raúl E. Lara-Mendoza
    • 2
  • Yassir E. Torres-Rojas
    • 3
    • 4
  • Felipe Galván-Magaña
    • 5
  • Humberto Bojórquez-Leyva
    • 3
  • Federico Páez-Osuna
    • 1
    • 3
    • 6
    Email author
  1. 1.Posgrado en Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Facultad de Ciencias del MarUniversidad Autónoma de SinaloaMazatlánMexico
  3. 3.Unidad Académica Mazatlán, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico
  4. 4.Instituto de Ecología, Pesquerías y Oceanografía del Golfo de MéxicoUniversidad Autónoma de Campeche (EPOMEX-UAC)CampecheMexico
  5. 5.Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias MarinasLa PazMexico
  6. 6.Miembro de El Colegio de SinaloaSinaloaMexico

Personalised recommendations