Ingestion of Microplastics by Zooplankton in the Northeast Pacific Ocean

  • Jean-Pierre W. Desforges
  • Moira Galbraith
  • Peter S. Ross
Article

Abstract

Microplastics are increasingly recognized as being widespread in the world’s oceans, but relatively little is known about ingestion by marine biota. In light of the potential for microplastic fibers and fragments to be taken up by small marine organisms, we examined plastic ingestion by two foundation species near the base of North Pacific marine food webs, the calanoid copepod Neocalanus cristatus and the euphausiid Euphausia pacifia. We developed an acid digestion method to assess plastic ingestion by individual zooplankton and detected microplastics in both species. Encounter rates resulting from ingestion were 1 particle/every 34 copepods and 1/every 17 euphausiids (euphausiids > copepods; p = 0.01). Consistent with differences in the size selection of food between these two zooplankton species, the ingested particle size was greater in euphausiids (816 ± 108 μm) than in copepods (556 ± 149 μm) (p = 0.014). The contribution of ingested microplastic fibres to total plastic decreased with distance from shore in euphausiids (r2 = 70, p = 0.003), corresponding to patterns in our previous observations of microplastics in seawater samples from the same locations. This first evidence of microplastic ingestion by marine zooplankton indicate that species at lower trophic levels of the marine food web are mistaking plastic for food, which raises fundamental questions about potential risks to higher trophic level species. One concern is risk to salmon: We estimate that consumption of microplastic-containing zooplankton will lead to the ingestion of 2–7 microplastic particles/day by individual juvenile salmon in coastal British Columbia, and ≤91 microplastic particles/day in returning adults.

Supplementary material

244_2015_172_MOESM1_ESM.docx (55 kb)
Supplementary material 1 (DOCX 54 kb)

References

  1. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605CrossRefGoogle Scholar
  2. Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23CrossRefGoogle Scholar
  3. Barlow J, Kahru M, Mitchell B (2008) Cetacean biomass, prey consumption, and primary production requirements in the California Current ecosystem. Mar Ecol Prog Ser 371:285–295CrossRefGoogle Scholar
  4. Barnes D, Galgani F, Thompson R, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B 364:1985–1998CrossRefGoogle Scholar
  5. Benkwitt CE, Brodeur RD, Hurst TP, Daly EA (2009) Diel feeding chronology, gastric evacuation, and daily food consumption of juvenile Chinook salmon in Oregon coastal waters. Trans Am Fish Soc 138:111–120CrossRefGoogle Scholar
  6. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve M, Koelmans AA (2013) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina (L.). Environ Sci Technol 47:593–600CrossRefGoogle Scholar
  7. Besseling E, Wang B, Lurling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343CrossRefGoogle Scholar
  8. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278CrossRefGoogle Scholar
  9. Brodeur RD (1990) A synthesis of the food habits and feeding ecology of salmonids in marine waters of the North Pacific. FRI-UW-9016. Fisheries Research Institute, University of Washington, Seattle, WAGoogle Scholar
  10. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T et al (2011) Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol 45:9175–9179CrossRefGoogle Scholar
  11. Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC (2013) Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol 23:2388–2392CrossRefGoogle Scholar
  12. Choy C, Drazen J (2013) Plastic for dinner? Observations of frequent debris ingestion by pelagic predatory fishes from the central North Pacific. Mar Ecol Prog Ser 485:155–163CrossRefGoogle Scholar
  13. Chua EM, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environ Sci Technol 48:8127–8134CrossRefGoogle Scholar
  14. Claessens M, Van Cauwenberghe L, Vandegehuchte MB, Janssen CR (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70:227–233CrossRefGoogle Scholar
  15. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597CrossRefGoogle Scholar
  16. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J et al (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646–6655Google Scholar
  17. Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS (2014) Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep 4:4528Google Scholar
  18. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Ubeda B, Hernández-León S et al (2014) Plastic debris in the open ocean. Proc Natl Acad Sci USA 111(28):10239–10244CrossRefGoogle Scholar
  19. Davison P, Asch R (2011) Plastic ingestion by mesopelagic fishes in the North Pacific subtropical gyre. Mar Ecol Prog Ser 432:173–180CrossRefGoogle Scholar
  20. Desforges J-PW, Galbraith M, Dangerfield N, Ross PS (2014) Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar Pollut Bull 79:94–99CrossRefGoogle Scholar
  21. Eriksson C, Burton H (2003) Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. Ambio 32:380–384CrossRefGoogle Scholar
  22. Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3CrossRefGoogle Scholar
  23. Foekema EM, De Gruijter C, Mergia MT, van Franeker JA, Murk AJ, Koelmans AA (2013) Plastic in north sea fish. Environ Sci Technol 47:8818–8824Google Scholar
  24. Fossi MC, Coppola D, Baini M, Giannetti M, Guerranti C, Marsili L et al (2014) Large filter feeding marine organisms as indicators of microplastic in the pelagic environment: the case studies of the Mediterranean basking shark (Cetorhinus maximus) and fin whale (Balaenoptera physalus). Mar Environ Res 100:17–24CrossRefGoogle Scholar
  25. Frost BW, Landry MR, Hassett RP (1983) Feeding behavior of large calanoid copepods Neocalanus cristatus and N. plumchrus from the subarctic Pacific Ocean. Deep Res 30:1–13CrossRefGoogle Scholar
  26. Graham ER, Thompson JT (2009) Deposit- and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29CrossRefGoogle Scholar
  27. Hamer J, Gutow L, Kohler A, Saborowski R (2014) Fate of microplastics in the marine isopod Idotea emarginata. Environ Sci Technol 48:13451–13459CrossRefGoogle Scholar
  28. Ishida Y, Ito S, Ueno Y, Sakai J (1998) Seasonal growth pattern of Pacific salmon (Oncrohynchus spp) in offshore waters of the North Pacific Ocean. North Pac Anadromous Fish Comm Bull 1:66–80Google Scholar
  29. Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48(3):1638–1645CrossRefGoogle Scholar
  30. Koehler A, Marx U, Broeg K, Bahns S, Bressling J (2008) Effects of nanoparticles in Mytilus edulis gills and hepatopancreas—a new threat to marine life? Mar Environ Res 66:12–14CrossRefGoogle Scholar
  31. Koelmans A, Besseling E, Wegner A, Foekema EM (2013) Plastic as a carrier of POPs to aquatic organisms: a model analysis. Environ Sci Technol 47:8992–8993CrossRefGoogle Scholar
  32. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54CrossRefGoogle Scholar
  33. Lee K, Shim WJ, Kwon OY, Kang J (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283CrossRefGoogle Scholar
  34. Liu H, Dagg MJ, Strom S (2005) Grazing by the calanoid copepod Neocalanus cristatus on the microbial food web in the coastal Gulf of Alaska. J Plankton Res 27:647–662CrossRefGoogle Scholar
  35. Lusher AL, McHugh M, Thompson RC (2013) Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollut Bull 67:94–99CrossRefGoogle Scholar
  36. Mathalon A, Hill P (2014) Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81:69–79CrossRefGoogle Scholar
  37. Maximenko N, Hafner J, Niiler P (2012) Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar Pollut Bull 65:51–62CrossRefGoogle Scholar
  38. Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139CrossRefGoogle Scholar
  39. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus 1758). Mar Pollut Bull 62:1207–1217CrossRefGoogle Scholar
  40. Nakagawa Y, Endo Y, Taki K (2001) Diet of Euphausia pacifica Hansen in Sanriku waters off northeastern Japan. Plankton Biol Ecol 48:68–77Google Scholar
  41. Possatto FE, Barletta M, Costa MF, do Sul JA, Dantas DV (2011) Plastic debris ingestion by marine catfish: an unexpected fisheries impact. Mar Pollut Bull 62:1098–1102CrossRefGoogle Scholar
  42. Rochman CM, Kurobe T, Flores I, Teh SJ (2014) Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment. Sci Total Environ 493:656–661CrossRefGoogle Scholar
  43. Setälä O, Fleming-Lehtinen V, Lehtiniemi M (2014) Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut 185:77–83CrossRefGoogle Scholar
  44. Tanaka K, Takada H, Yamashita R, Mizukawa K, Fukuwaka M, Watanuki Y (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar Pollut Bull 69:219–222CrossRefGoogle Scholar
  45. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AWG et al (2004) Lost at sea: where is all the plastic? Science 304:838CrossRefGoogle Scholar
  46. Van Cauwenberghe L, Janssen CR (2014) Microplastics in bivalves cultured for human consumption. Environ Pollut 193:65–70CrossRefGoogle Scholar
  47. Von Moos N, Burkhardt-Holm P, Kohle A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335CrossRefGoogle Scholar
  48. Watts AJR, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR et al (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48:8823–8830CrossRefGoogle Scholar
  49. Wright SL, Rowe D, Thompson RC, Galloway TS (2013a) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033CrossRefGoogle Scholar
  50. Wright SL, Thompson RC, Galloway TS (2013b) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jean-Pierre W. Desforges
    • 1
  • Moira Galbraith
    • 2
  • Peter S. Ross
    • 1
  1. 1.Ocean Pollution Research Program, Coastal Ocean Research InstituteVancouver AquariumVancouverCanada
  2. 2.Institute of Ocean SciencesFisheries and Oceans CanadaSidneyCanada

Personalised recommendations