Bioavailability of Cadmium, Copper, Mercury, Lead, and Zinc in Subtropical Coastal Lagoons from the Southeast Gulf of California Using Mangrove Oysters (Crassostrea corteziensis and Crassostrea palmula)

  • Federico Páez-Osuna
  • Carmen C. Osuna-Martínez


Cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) were assessed in the edible tissues of Crassrotrea corteziensis oysters collected during the rainy and dry seasons in 27 sites from 8 coastal lagoons of the southeast Gulf of California. In addition, C. palmula oysters were sampled at 9 sites from the same mangrove roots where C. corteziensis oysters were collected. Metal analyses were performed by flame atomic absorption spectrophotometry (Cd, Cu, and Zn), graphite furnace (Pb), and cold vapor detection (Hg). The obtained mean levels were (µg g−1 dry weight) as follows: Cd 6.05 ± 2.77, Cu 60.0 ± 33.4, Hg 0.38 ± 0.17, Pb 1.11 ± 0.63, and Zn 777 ± 528 µg g−1. For all metals except Hg, the concentrations were greater during dry season than during rainy seasons. The high levels, particularly that for Cd, were related to upwelling along the eastern Gulf of California. High Hg levels in the rainy season were associated with the transport of materials from the watershed to the lagoon. Shrimp farming, agriculture, and other sources were considered as potential sources to explain the differences in metal bioavailability in the 8 lagoons. The mean concentrations of Cd (Santa María-La Reforma lagoon), Cu [San Ignacio–Navachiste–El Macapule (SINM), Urías (URI), and Altata-Ensenada del Pabellón lagoons], and zinc (Zn) (URI, Santa María–Ohuira–Topolobampo, El Colorado, and SINM lagoons) during the dry season were greater than the maximum permissible limits. C. palmula collected in 8 sites where they were present simultaneously with C. corteziensis had consistently greater metal levels than C. corteziensis, but correlation analyses showed a high and significant (P < 0.05) correlation between metal concentrations in both species. The correlation equations obtained are useful where the same species is not distributed and is necessary to compare results from distinct regions.


Rainy Season Condition Index Coastal Lagoon Shrimp Farming Lagoon Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank H. Bojórquez Leyva for assistance in the laboratory, M.C. Ramírez Jáuregui for bibliographic support, and G. Ramírez-Reséndiz and C. Suárez Gutiérrez for the preparation of figures. This work was supported by the Universidad Nacional Autonóma de México (Grant Nos. PAPIIT IN210609 and PAPIIT IN208813-2).


  1. Affizah N, Vedamanikam VJ, Shazilli NAM (2009) Concentration of arsenic and mercury in the oyster (Crassostrea iredalei) from Setiu lagoon, Terengganu. Toxicol Environ Chem 91:259–265CrossRefGoogle Scholar
  2. Alfonso JA, Handt H, Mora A, Vásquez Y, Azocar J, Marcano E (2013) Temporal distribution of heavy metal concentrations in oysters Crassostrea rhizophorae from the central Venezuela coast. Mar Pollut Bull 73:394–398CrossRefGoogle Scholar
  3. Azlisham M, Vedamanikam VJ, Shazilli NAM (2009) Concentrations of cadmium, manganese, copper, zinc, and lead in the tissues of the oyster (Crassostrea iredalei) obtained from Setiu Lagoon, Terengganu, Malaysia. Toxicol Environ Chem 91:251–258CrossRefGoogle Scholar
  4. Bayen S (2012) Occurrence, bioavailability and toxic effects of trace metals and organic contaminants in mangrove ecosystems: a review. Environ Int 48:84–101CrossRefGoogle Scholar
  5. Chávez-Villalba J, López-Tapia M, Mazón-Suástegui J, Robles-Mungaray M (2005) Growth of the oyster Crassostrea corteziensis (Hertlein 1951) in Sonora, Mexico. Aquac Res 36:1337–1344CrossRefGoogle Scholar
  6. Comisión Nacional del Agua Servicio Meteorológico Nacional (2005) Datos estadísticos climáticos del observatorio meteorológico de Mazatlán, Sinaloa, México [in Spanish]. CNAGoogle Scholar
  7. Costa BGB, Soares TM, Torres RF, Lacerda LD (2013) Mercury distribution in a mangrove tidal creek affected by intensive shrimp farming. Bull Environ Contam Toxicol 90:537–541CrossRefGoogle Scholar
  8. Frías-Espericueta MG, Osuna-López JI, Flores-Reyes S, López-López G, Izaguirre-Fierro G (2005) Heavy metals in the oyster Crassostrea corteziensis from Urías lagoon, Mazatlan, Mexico, associated with different anthropogenic discharges. Bull Environ Contam Toxicol 74:996–1002CrossRefGoogle Scholar
  9. Frías-Espericueta MG, Osuna-López JI, Bañuelos-Vargas I, López-López G, Muy-Rangel MD, Izaguirre-Fierro G et al (2009) Cadmium, copper, lead and zinc contents of the mangrove oyster, Crassostrea corteziensis, of seven coastal lagoons of NW Mexico. Bull Environ Contam Toxicol 83:595–599CrossRefGoogle Scholar
  10. García-Rico L, Tejeda-Valenzuela L, Burgos-Hernández A (2010) Seasonal variations in the concentrations of metals in Crassostrea corteziensis from Sonora, Mexico. Bull Environ Contam Toxicol 85:209–213CrossRefGoogle Scholar
  11. Instituto Nacional de Geografía y Estadística (2010) Available at: Accessed: November 6, 2014
  12. Jara-Marini ME, Soto-Jiménez MF, Páez-Osuna F (2008) Trace metal accumulation patterns in a mangrove lagoon ecosystem, Mazatlan Harbour, SE Gulf of California. J Environ Sci Health A 43:1–11CrossRefGoogle Scholar
  13. Kanthai LD, Gobin JF, Beckles DM, Lauckner B, Mohammed A (2014) Metals in sediments and mangrove oysters (Crassostrea rhizophorae) from the Caroni Swamp, Trinidad. Environ Monit Assess 186:1961–1976CrossRefGoogle Scholar
  14. Lacerda LD, Santos JA, Madrid RM (2006) Copper emission factors from intensive shrimp aquaculture. Mar Pollut Bull 52:1823–1826CrossRefGoogle Scholar
  15. Lacerda LD, Soares TM, Costa BGB, Godoy MDP (2011) Mercury emission factors from intensive shrimp aquaculture and their relative importance to the Jaguaribe River estuary, NE Brazil. Bull Environ Contam Toxicol 87:657–661CrossRefGoogle Scholar
  16. Lares ML, Flores-Muñoz G, Lara-Lara R (2002) Temporal variability of bioavailable Cd, Hg, Zn, Mn and Al in an upwelling regime. Environ Pollut 120:595–608Google Scholar
  17. Lewis M, Pryor R, Wilking L (2011) Fate and effects of anthropogenic chemicals in mangrove ecosystems: a review. Environ Pollut 159:2328–2346CrossRefGoogle Scholar
  18. Lobel PB, Belkhode SP, Jackson SE, Longerich HP (1990) Recent taxonomic discoveries concerning the mussel Mytilus: implications for biomonitoring. Arch Environ Contam Toxicol 19:508–512CrossRefGoogle Scholar
  19. Lucas A, Beninger P (1985) The use of physiological condition indices in marine bivalve aquaculture. Aquaculture 44:187–200CrossRefGoogle Scholar
  20. Lyle-Fritch LP, Romero-Beltrán E, Páez-Osuna F (2006) Survey on use of the chemical and biological products for shrimp farming in Sinaloa (NW Mexico). Aquac Eng 35:135–146CrossRefGoogle Scholar
  21. Maanan M (2008) Heavy metal concentrations in marine molluscs from the Moroccan coastal region. Environ Pollut 153:176–183CrossRefGoogle Scholar
  22. Millero F (2006) Chemical oceanography. Taylor & Francis, Boca RatonGoogle Scholar
  23. Norma Oficial Mexicana 242 (NOM-242-SSA1) (2009) Productos y servicios. Productos de la pesca frescos, refrigerados, congelados y procesados. Especificaciones sanitarias y métodos de prueba [in Spanish]Google Scholar
  24. Osuna-López JI, Zazueta-Padilla HM, Rodríguez-Higuera A, Páez-Osuna F (1990) Trace metal concentration in mangrove oyster (Crassostea corteziensis) from tropical lagoon environments, Mexico. Mar Pollut Bull 21:486–488CrossRefGoogle Scholar
  25. Osuna-Martínez CC, Páez-Osuna F, Alonso-Rodríguez R (2010) Mercury in cultured oysters (Crassostrea gigas Thunberg 1793 and C. corteziensis Hertlein 1951) from four coastal lagoons of the SE Gulf of California, Mexico. Bull Environ Contam Toxicol 85:339–343CrossRefGoogle Scholar
  26. Páez-Osuna F, Marmolejo-Rivas C (1990) Trace metals in tropical coastal lagoon bivalves, Crassostrea corteziensis. Bull Environ Contam Toxicol 45:538–544CrossRefGoogle Scholar
  27. Páez-Osuna F, Izaguirre-Fierro G, Godoy-Meza RI, González-Fernández F, Osuna-López JI (1988) Metales pesados en cuatro especies de organismos filtradores de la región costera de Mazatlán: técnicas de extracción y niveles de concentración [in Spanish]. Contam Amb 4:37–41Google Scholar
  28. Páez-Osuna F, Frías-Espericueta MG, Osuna-López JI (1995) Trace metal concentrations in relation to season and gonadal maturation in the oyster Crassostrea iridescens. Mar Environ Res 40:19–31CrossRefGoogle Scholar
  29. Páez-Osuna F, Ruíz-Fernández AC, Botello AV, Ponce-Vélez G, Osuna-López JI, Frías-Espericueta MG et al (2002) Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Mar Pollut Bull 44:1296–1313CrossRefGoogle Scholar
  30. Páez-Osuna F, Gracia-Gasca A, Flores-Verdugo F, Lyle-Fritch ML, Alonso-Rodríguez R, Roque A et al (2003) Shrimp aquaculture development and the environment in the Gulf of California ecoregion. Mar Pollut Bull 46:806–815CrossRefGoogle Scholar
  31. Páez-Osuna F, Ramírez-Reséndiz G, Ruiz-Fernández AC, Soto-Martínez MF (2007) La Contaminación por Nitrógeno y Fósforo en Sinaloa: Flujos, Fuentes, Efectos y Opciones de manejo. In: Páez-Osuna F (ed) La Serie las Lagunas Costeras de Sinaloa. UNAM, El Colegio de SinaloaGoogle Scholar
  32. Rainbow PS, Phillips DJS (1993) Cosmopolitan biomonitors of trace metals. Mar Pollut Bull 26:593–601CrossRefGoogle Scholar
  33. Rebelo MF, Amaral MCR, Pfeiffer WC (2005) Oyster condition index in Crassostrea rhizophorae (Guilding 1828) from a heavy-metal polluted coastal lagoon. Braz J Biol 65:345–351CrossRefGoogle Scholar
  34. Ruelas-Inzunza JR, Páez-Osuna F (2000) Comparative bioavailability of trace metals using three filter-feeder organisms in a subtropical coastal environment (Southeast Gulf of California). Environ Pollut 107:437–444CrossRefGoogle Scholar
  35. Ruelas-Inzunza JR, Páez-Osuna F (2008) Trophic distribution of Cd, Pb, and Zn in a food web from Altata-Ensenada del Pabellón subtropical lagoon, SE Gulf of California. Arch Environ Contam Toxicol 54:584–596CrossRefGoogle Scholar
  36. Ruíz-Fernández AC, Frignani M, Hillaire-Marcel C, Ghaleb B, Arvizu MD, Raygoza-Viera JR et al (2009) Trace metals (Cd, Cu, Hg, and Pb) accumulation recorded in the intertidal mudflat sediments of three coastal lagoons of the Gulf of California, Mexico. Estuar Coast 32:551–560CrossRefGoogle Scholar
  37. Silva CAR, Rainbow PS, Smith BD, Santos ZI (2001) Biomonitoring of trace metal contamination in the Potengi estuary, Natal (Brasil), using the oyster Crassostrea rhizophorae a local food source. Water Res 17:4072–4078CrossRefGoogle Scholar
  38. Soto-Jiménez MF, Flegal AR (2008) Origin of lead in the Gulf of California ecoregion using stable isotope analysis. J Geochem Explor 101:209–217CrossRefGoogle Scholar
  39. Soto-Jiménez MF, Páez-Osuna F, Scelfo G, Hibdon S, Franks R, Aggarawl J et al (2008) Lead pollution in subtropical ecosystems on the SE Gulf of California Coast: a study of concentrations and isotopic composition. Mar Environ Res 66:451–458CrossRefGoogle Scholar
  40. Staines-Urías F, Douglas RG, Gorsline DS (2009) Oceanographic variability in the southern Gulf of California over the past 400 years: evidence from faunal and isotopic records from planktonic foraminifera. Palaeog Palaeoclim Palaeoecol 284:337–354CrossRefGoogle Scholar
  41. Szefer P, Fowler SW, Ikuta K, Páez-Osuna F, Ali AA, Kim B (2006) A comparative assessment of heavy metal accumulation in soft parts and byssus from subartic, temperate, subtropical and tropical marine environments. Environ Pollut 139:70–78CrossRefGoogle Scholar
  42. Walne PR, Mann R (1975) Growth and biochemical composition in Ostrea edulis and Crassostrea gigas. Proceedings of the 9th European Marine Biology Symposium, pp 587–607Google Scholar
  43. World Health Organization (1982) Toxicological evaluation of certain food additives and contaminants. Joint FAO/WHO expert committee on food additives. WHO food additives. WHO, Geneva, pp 28–35Google Scholar
  44. World Health Organization (1996) Trace elements in human nutrition and health. WHO, Geneva, p 178Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Federico Páez-Osuna
    • 1
  • Carmen C. Osuna-Martínez
    • 2
  1. 1.Instituto de Ciencias del Mar y Limnología, Unidad Académica MazatlánUniversidad Nacional Autónoma de MéxicoMazatlánMexico
  2. 2.Posgrado en Ciencias del Mar y Limnología, Unidad Académica MazatlánUniversidad Nacional Autónoma de MéxicoMazatlánMexico

Personalised recommendations