Advertisement

Free Silver Ion as the Main Cause of Acute and Chronic Toxicity of Silver Nanoparticles to Cladocerans

  • Masaki SakamotoEmail author
  • Jin-Yong Ha
  • Shin Yoneshima
  • Chisato Kataoka
  • Haruki Tatsuta
  • Shosaku Kashiwada
Article

Abstract

We investigated the interspecific variation of silver nanoparticle (SNP) sensitivity in common cladocerans (Daphnia magna, D. galeata, and Bosmina longirostris) and the exact cause of both acute and chronic toxicity focusing on the form of silver (NPs and ions). Materials tested were non-surface-coated silver nanocolloids (SNCs) and AgNO3. The results of the acute toxicity tests support the theory that the effects of SNPs on aquatic organisms is mainly due to Ag+ released from SNPs. Among the three cladocerans, D. galeata was more sensitive to silver (as Ag+) than both D. magna and B. longirostris. Moreover, the chronic toxicity of SNCs was also derived from dissolved silver (especially Ag+). SNCs (as total silver concentration) showed far lower chronic compared with acute toxicity to daphnids because the amount of dissolved silver decreased in the presence of prey algae. The chronic end-point values (EC10 values for net reproductive rate and the probability of survival to maturation) did not differ largely from acute ones (48-h EC50 obtained from acute toxicity tests and 48-h LC50 estimated by the biotic ligand model) when the values were calculated based on Ag+ concentration. The α value (concentration at which intrinsic population growth rate is decreased to zero) estimated by a power function model was a reliable parameter for assessing the chronic toxicity of silver.

Keywords

Inductively Couple Plasma Mass Spectrometry AgNO3 Dissolve Inorganic Carbon Ethylene Diamine Tetraacetic Acid Ethylene Diamine Tetraacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank N. Watanabe for kind assistance during the experiments. We are grateful to T. Kusui for helpful comments on this study. This study was supported by Grants-in-Aid for Scientific Research to M. Sakamoto (Grant No. 23510031) and to S. Kashiwada (Grant No. 23310026) from Japan Society for the Promotion of Science.

References

  1. Allen HJ, Impellitteri CA, Macke DA, Heckman JL, Poynton HC, Lazorchak JM et al (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750CrossRefGoogle Scholar
  2. Alonso M (1991) Review of Iberian Cladocera with remarks on ecology and biogeography. Hydrobiologia 225:37–43CrossRefGoogle Scholar
  3. Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102CrossRefGoogle Scholar
  4. Baumann J, Sakka Y, Bertrand C, Köser J, Filser J (2013) Adaptation of the Daphnia sp. acute toxicity test: miniaturization and prolongation for the testing of nanomaterials. Environ Sci Pollut Res 21:2201–2213CrossRefGoogle Scholar
  5. Bianchini A, Wood C (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chem 22:1361–1367CrossRefGoogle Scholar
  6. Bianchini A, Grosell M, Gregory SM, Wood CH (2002) Acute silver toxicity in aquatic animals is a function of sodium uptake rate. Environ Sci Technol 36:1763–1776CrossRefGoogle Scholar
  7. Blinova I, Niskanen J, Kajankari P, Kanarbik L, Käkinen A, Tenhu H, Penttinen OP, Kahru A (2013) Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ Sci Pollut Res 20:3456–3463CrossRefGoogle Scholar
  8. Bossuyt BTA, Janssen CR (2005) Copper toxicity to different field-collected cladoceran species: intra- and inter-species sensitivity. Environ Pollut 136:145–154CrossRefGoogle Scholar
  9. Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcìa CP et al (2012) Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environ Sci Technol 46:11336–11344CrossRefGoogle Scholar
  10. Case TJ (2000) An illustrated guide to theoretical ecology. Oxford University Press, New YorkGoogle Scholar
  11. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531CrossRefGoogle Scholar
  12. Glover CN, Wood CM (2004) Physiological interactions of silver and humic substances in Daphnia magna: effects on reproduction and silver accumulation following an acute silver challenge. Comp Biochem Physiol C 139:273–280CrossRefGoogle Scholar
  13. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222CrossRefGoogle Scholar
  14. Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133:287–303Google Scholar
  15. Hogstrand C, Wood CM (1998) Towards a better understanding of the bioavailability, physiology and toxicity of silver to fish: implications for water quality criteria. Environ Toxicol Chem 17:572–578CrossRefGoogle Scholar
  16. Kashiwada S, Ariza ME, Kawaguchi T, Nakagame Y, Jayasinghe BS, Gärtner K et al (2012) Silver nanocolloids disrupt Medaka embryogenesis through vital gene expressions. Environ Sci Technol 46:6278–6287CrossRefGoogle Scholar
  17. Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK et al (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ Sci Technol 46:10772–10780CrossRefGoogle Scholar
  18. Kilham SS, Kreeger DA, Lynn SG, Goulden CE, Herrera L (1998) COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia 377:147–159CrossRefGoogle Scholar
  19. Koivisto S, Ketola M, Walls M (1992) Comparison of five cladoceran species in short- and long-term copper exposure. Hydrobiologia 248:125–136CrossRefGoogle Scholar
  20. Milne CJ, Kinniburgh DG, Tipping E (2001) Generic NICA-Donnan model parameters for proton binding by humic substances. Environ Sci Technol 35:2049–2059CrossRefGoogle Scholar
  21. Milne CJ, Kinniburgh DG, Van Riemsdijk WH, Tipping E (2003) Generic NICA-Donnan model parameters for metal-ion binding by humic substances. Environ Sci Technol 37:958–971CrossRefGoogle Scholar
  22. Muyssen BTA, Janssen CR (2001) Multigeneration zinc acclimation and tolerance in Daphnia magna: implications for water-quality guidelines and ecological risk assessment. Environ Toxicol Chem 20:2053–2060CrossRefGoogle Scholar
  23. Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao AJ et al (2008a) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386CrossRefGoogle Scholar
  24. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N et al (2008b) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964CrossRefGoogle Scholar
  25. Nebeker AV, McAuliffe CK, Mshar R, Stevens DG (1983) Toxicity of silver to steelhead and rainbow trout, fathead minnows and Daphnia magna. Environ Toxicol Chem 2:95–104CrossRefGoogle Scholar
  26. Newton KM, Puppala H, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticles toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32:2356–2364CrossRefGoogle Scholar
  27. Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol 38:6177–6192CrossRefGoogle Scholar
  28. Organisation for Economic Co-operation and Development (OECD) (2004) OECD guidelines for testing of chemicals, no. 202: Daphnia sp., acute immobilization test. OECD, ParisGoogle Scholar
  29. Organisation for Economic Co-operation and Development (OECD) (2012) OECD guidelines for testing of chemicals, no. 211: Daphnia magna reproduction test. OECD, ParisGoogle Scholar
  30. Poynton HC, Lazorchak JM, Impellitteri A, Blalock BJ, Rogers K, Allen HJ, Loguinov A, Heckman JL, Govidnaswamy S (2012) Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46:6288–6296CrossRefGoogle Scholar
  31. Ribeiro F, Gallego-Urrea JA, Jurkschat K, Crossley A, Hassellöv M, Taylor C et al (2014) Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci Total Environ 466–467:232–241CrossRefGoogle Scholar
  32. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12:1–22Google Scholar
  33. Sakamoto M, Chang KH, Hanazato T (2005) Differential sensitivity of a predacious cladoceran (Leptodora) and its prey (the cladoceran Bosmina) to the insecticide carbaryl: results of acute toxicity tests. B Environ Contam Tox 75:28–33CrossRefGoogle Scholar
  34. Sakamoto M, Tanaka Y (2013) Different tolerance of zooplankton communities to insecticide application depending on the species composition. J Ecol Environ 36:141–150CrossRefGoogle Scholar
  35. Stearns SC (1992) The evolution of life histories. Oxford University Press, New YorkGoogle Scholar
  36. Stensberg MC, Madangopal R, Yale G, Wei Q, Ochoa-Acuña H, Wei A et al (2014) Silver nanoparticles-specific mitotoxicity in Daphnia magna. Nanotoxicology 8:833–842CrossRefGoogle Scholar
  37. Stevenson LM, Dickson H, Klanjscek T, Keller AA, McCauley E, Nisbet RM (2013) Environmental feedbacks and engineered nanoparticles: mitigation of silver nanoparticle toxicity to Chlamydomonas reinhardtii by algal-produced organic compounds. PLoS ONE 8:e74456CrossRefGoogle Scholar
  38. Tanaka Y, Nakanishi J (2001) Model selection and parameterization of the concentration-response function for population-level effects. Environ Toxicol Chem 20:1857–1865Google Scholar
  39. Vesela S, Vijverberg J (2007) Effect of body size on toxicity of zinc in neonates of four differently sized Daphnia species. Aquat Ecol 41:67–73CrossRefGoogle Scholar
  40. Völker C, Boedicker C, Daubenthaler J, Oetken M, Oehlmann J (2013) Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS One 8:e75026CrossRefGoogle Scholar
  41. Zhao CM, Wang WX (2011) Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to Daphnia magna. Environ Toxicol Chem 30:885–892CrossRefGoogle Scholar
  42. Zhao CM, Wang WX (2012) Size-dependent uptake of silver nanoparticles in Daphnia magna. Environ Sci Technol 46:11345–11351CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Masaki Sakamoto
    • 1
    • 2
    Email author
  • Jin-Yong Ha
    • 1
  • Shin Yoneshima
    • 2
  • Chisato Kataoka
    • 3
  • Haruki Tatsuta
    • 4
  • Shosaku Kashiwada
    • 3
  1. 1.Department of Environmental Engineering, Faculty of EngineeringToyama Prefectural UniversityImizu-shiJapan
  2. 2.Graduate School of EngineeringToyama Prefectural UniversityImizu-shiJapan
  3. 3.Graduate School of Life ScienceToyo UniversityGunmaJapan
  4. 4.Department of Ecology and Environmental ScienceUniversity of the RyukyusOkinawaJapan

Personalised recommendations