Assessing the Toxicity of Chemical Compounds Associated With Land-Based Marine Fish Farms: The Sea Urchin Embryo Bioassay With Paracentrotus lividus and Arbacia lixula

  • C. CarballeiraEmail author
  • M. R. De Orte
  • I. G. Viana
  • T. A. DelValls
  • A. Carballeira


In aquaculture, disinfection of facilities, prevention of fish diseases, and stimulation of fish growth are priority goals and the most important sources of toxic substances to the environment, together with excretory products from fish. In the present study, embryos of two species of sea urchin (Paracentrotus lividus and Arbacia lixula) were exposed to serial dilutions of six antibiotics (amoxicillin (AMOX), ampicillin, flumequine (FLU), oxytetracycline (OTC), streptomycin (ST), and sulfadiazine [SFD]) and two disinfectants (sodium hypochlorite (NaClO) and formaldehyde [CH2O]). Alterations in larval development were studied, and the effective concentrations (ECs) were calculated to evaluate the toxicity of the substances. Both species showed similar sensitivities to all substances tested. Disinfectants (EC50 = 1.78 and 1.79 mg/l for CH2O; EC50 = 10.15 and 11.1 mg/l for NaClO) were found to be more toxic than antibiotics. AMOX, OTC, and ST caused <20 % of alterations, even at the highest concentrations tested. FLU was the most toxic to P. lividus (EC50 = 31.0 mg/l) and SFD to A. lixula (EC50 = 12.7 mg/l). The sea urchin bioassay should be considered within toxicity assessment–monitoring plans because of the sensitivity of larvae to disinfectants.


NaClO United States Environmental Protection Agency Artificial Seawater AMOX Paracentrotus Lividus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was partly funded by the National Marine Aquaculture Plan. JACUMAR Project (2008): “Selection of indicators, determination of reference values, design of programs, protocols and measures for environmental studies in aquaculture (INDAQUA).” C. Carballeira is grateful for financial support from the University of Cadiz Predoctoral Fellowship Programme (Spain).

Supplementary material

244_2012_9769_MOESM1_ESM.xls (16 kb)
Supplementary material 1 (XLS 15 kb)


  1. Altinok I, Grizzle JM (2004) Excretion of ammonia and urea by phylogenetically diverse fish species in low salinities. Aquaculture 238(1–4):499–507CrossRefGoogle Scholar
  2. Andreozzi R, Canterino M, Giudice RL, Marotta R, Pinto G, Pollio A (2006) Lincomycin solar photodegradation, algal toxicity and removal from wastewaters by means of ozonation. Water Res 40(3):630–638CrossRefGoogle Scholar
  3. Arizzi Novelli A, Picone M, Losso C, Volpi Ghirardini AM (2003) Ammonia as confounding factor in toxicity tests with the sea urchin Paracentrotus lividus (Lmk). Toxicol Environ Chem 85(4):183–191CrossRefGoogle Scholar
  4. Backhaus T, Grimme LH (1999) The toxicity of antibiotic agents to the luminescent bacterium Vibrio fischeri. Chemosphere 38(14):3291–3301CrossRefGoogle Scholar
  5. Backhaus T, Scholze M, Grimme LH (2000) The single substance and mixture toxicity of quinolones to the bioluminescent bacterium Vibrio fischeri. Aquat Toxicol 49(1–2):49–61CrossRefGoogle Scholar
  6. Beausse J (2004) Selected drugs in solid matrices: a review of environmental determination, occurrence and properties of principal substances. Trends Analyt Chem 23(10):753–761CrossRefGoogle Scholar
  7. Bell TG, Johnson MT, Jickells TD, Liss PS (2007) Ammonia/ammonium dissociation coefficient in seawater: a significant numerical correction. Environ Chem 4(3):183–186CrossRefGoogle Scholar
  8. Bellas J, Beiras R, Mariño-Balsa J, Fernández N (2005) Toxicity of organic compounds to marine invertebrate embryos and larvae: a comparison between the sea urchin embryogenesis bioassay and alternative test species. Ecotoxicology 14(3):337–353CrossRefGoogle Scholar
  9. Bonaventura R, Poma V, Costa C, Matranga V (2005) UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun 328(1):150–157CrossRefGoogle Scholar
  10. Borowitzka MA (1972) Intertidal algal species diversity and the effect of pollution. Aust J Mar Fresh Res 23(2):73–84CrossRefGoogle Scholar
  11. Boxall ABA, Fogg LA, Blackwell PA, Blackwell P, Kay P, Pemberton EJ et al (2004) Veterinary medicines in the environment. In: Albert LA, Gerba CP, Giesy J et al (eds) Reviews of environmental contamination and toxicology, vol 180. Springer, New York, p 91CrossRefGoogle Scholar
  12. Burridge L, Weis JS, Cabello F, Pizarro J, Bostick K (2010) Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture 306(1–4):7–23CrossRefGoogle Scholar
  13. Byrne M, Oakes D, Pollak J, Laginestra E (2008) Toxicity of landfill leachate to sea urchin development with a focus on ammonia. Cell Biol Toxicol 24(6):503–512CrossRefGoogle Scholar
  14. Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2010) Sea urchin fertilization in a warm, acidified and high pCO2 ocean across a range of sperm densities. Mar Environ Res 69(4):234–239CrossRefGoogle Scholar
  15. Campbell DA, Pantazis P, Kelly MS (2001) Impact and residence time of oxytetracycline in the sea urchin, Psammechinus miliaris, a potential aquaculture species. Aquaculture 202(1–2):73–87CrossRefGoogle Scholar
  16. Caplat C, Oral R, Mahaut ML, Mao A, Barillier D, Guida M et al (2010) Comparative toxicities of aluminum and zinc from sacrificial anodes or from sulfate salt in sea urchin embryos and sperm. Ecotoxicol Environ Saf 73:1138–1143 CrossRefGoogle Scholar
  17. Carballeira C, De Orte MR, VianaI IG, Carballeira A (2011a) Implementation of a minimal biological test set for assessment of ecotoxic effect of effluents from land-based fish farms. Ecotox Environ Saf 78:148–161CrossRefGoogle Scholar
  18. Carballeira C, Espinosa J, Carballeira A (2011b) Linking N15 and histopathological effects in molluscs exposed in situ to effluents from land-based marine fish farms. Mar Poll Bull 62(12):2633–2641CrossRefGoogle Scholar
  19. Carballeira C, Martín-Díaz ML, DelValls TA (2011c) Optimization of fertilization and larval development toxicity tests using two marine sea urchin species. Study of salinity influence. Mar Environ Res 72(4):196–203CrossRefGoogle Scholar
  20. Carballeira C, Martín-Díaz L, DelValls TA (2012a) Identification of specific malformations of sea urchin larvae for toxicity assessment: Application to marine pisciculture effluents. Mar Environ Res. doi: 10.1016/j.marenvres.2012.01.001 Google Scholar
  21. Carballeira C, Martín-Díaz ML, DelValls TA, Carballeira A (2012b) Designing an integrated environmental monitoring plan for land-based marine fish farms located at exposed and hard bottom coastal areas. J Environ Monit. doi: 10.1039/c2em10839a Google Scholar
  22. Carr R, Biedenbach J, Nipper M (2006) Influence of potentially confounding factors on sea urchin porewater toxicity tests. Arch Environ Contam Toxicol 51(4):573–579CrossRefGoogle Scholar
  23. Cesar A, Marín-Guirao L, Vita R, Marín A (2002) Sensitivity of mediterranean amphipods and sea urchins to reference toxicants. Cienc Mar 28(4):407–417Google Scholar
  24. Cesar A, Marín A, Marín-Guirao L, Vita I (2004) Amphipod and sea urchin tests to assess the toxicity of mediterranean sediments: the case of Portmán Bay. Sci Mar 68(1):205–213CrossRefGoogle Scholar
  25. Chee-Sanford JC, Mackie RI, Koike S, Krapac IG, Lin YF, Yannarell AC et al (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste. J Environ Qual 38(3):1086–1108CrossRefGoogle Scholar
  26. Centro Tecnológico de Saneamento Básico (1999) Metodo de ensaio: Agua do mar—Teste de toxicidade cronica de curta duracao com Lytechinus variegatus, Lamark,1816 (Echinodermata: Echinoidea). CETESB do Estado de Sao Paulo, São Paulo, BrasilGoogle Scholar
  27. Constable M, Charlton M, Jensen F, McDonald K, Craig G, Taylor KW (2003) An ecological risk assessment of ammonia in the aquatic environment. Hum Ecol Risk Assess 9(2):527–548CrossRefGoogle Scholar
  28. Corporation Black and Veatch (2010) White’s handbook of chlorination and alternative disinfectants, 5th edn. Wiley, New Jersey, p 1062Google Scholar
  29. Costello MJ, Grant A, Davies IM, Cecchini S, Papoutsoglou S, Quigley D et al (2001) The control of chemicals used in aquaculture in Europe. J Appl Ichthyol 17(4):173–180CrossRefGoogle Scholar
  30. Crane M, Burton GA, Culp JM, Greenberg MS, Munkittrick KR, Ribeiro R et al (2007) Review of aquatic in situ approaches for stressor and effect diagnosis. Integr Environ Assess Manage 3(2):234–245CrossRefGoogle Scholar
  31. Douet DG, Le Bris H, Giraud E (2009) Environmental aspects of drug and chemical use in aquaculture: an overview. Options Méditerranéennes 86:105–126Google Scholar
  32. Eguchi K, Nagase H, Ozawa M, Endoh YS, Goto K, Hirata K et al (2004) Evaluation of antimicrobial agents for veterinary use in the ecotoxicity test using microalgae. Chemosphere 57(11):1733–1738CrossRefGoogle Scholar
  33. Environment Canada (1997) Biological test method: fertilization assay using echinoids (sea urchins and sand dollars). Method development and applications. Environmental Technology Center, OttawaGoogle Scholar
  34. Eternal Technology Corporation (2004) Material safety data sheet of formaldehyde. Eternal Technology Corporation, Virginia, p 7Google Scholar
  35. Eternal Technology Corporation (2011) Material safety data sheet of formaldehyde. Eternal Technology Corporation, VirginiaGoogle Scholar
  36. Fernandes TF, Eleftheriou A, Ackefors H, Eleftheriou M, Ervik A, Sanchez M et al (2001) The scientific principles underlying the monitoring of the environmental impacts of aquaculture. J Appl Ichthyol 17(4):181–193CrossRefGoogle Scholar
  37. Fernández N (2002) Evaluación biológica de la contaminación marina costera mediante bioensayos con embriones del erizo de mar Paracentrotus lividus. Doctoral thesis, Universidad de Vigo, Vigo, SpainGoogle Scholar
  38. Flaherty M, Szuster B, Miller P (2000) Low salinity inland shrimp farming in Thailand. Ambio 29(3):174–179Google Scholar
  39. Gräslund S, Bengtsson BE (2001) Chemicals and biological products used in south-east Asian shrimp farming, and their potential impact on the environment—a review. Sci Total Environ 280(1–3):93–131CrossRefGoogle Scholar
  40. Hall LW, Anderson RD (1995) The influence of salinity on the toxicity of various classes of chemicals to aquatic biota. Crit Rev Toxicol 25(4):281–346CrossRefGoogle Scholar
  41. Halling-Sørensen B (2001) Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch Environ Contam Toxicol 40(4):451–460CrossRefGoogle Scholar
  42. Halling-Sørensen B, Sengeløv G, Ingerslev F, Jensen LB (2003) Reduced antimicrobial potencies of oxytetracycline, tylosin, sulfadiazin, streptomycin, ciprofloxacin, and olaquindox due to environmental processes. Arch Environ Contam Toxicol 44(1):7–16CrossRefGoogle Scholar
  43. Hernando MD, De Vettori S, Martínez Bueno MJ, Fernández-Alba AR (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68(4):724–730CrossRefGoogle Scholar
  44. Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ (2009) Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis 49(8):1248–1253CrossRefGoogle Scholar
  45. Holten-Lützhøft CH, Halling-Sørensen B, Jørgensen SE (1999) Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36(1):1–6CrossRefGoogle Scholar
  46. Huntington TC, Roberts H, Cousins N, Pitta V, Marchesi N, Sanmamed A et al (2006) Some aspects of the environmental impact of aquaculture in sensitive areas. Report to the DG fish and maritime affairs of the European Commission. Poseidon Aquatic Resource Management, Hampshire, p 305Google Scholar
  47. Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346(1–3):87–98CrossRefGoogle Scholar
  48. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) (1997) Towards safe and effective use of chemicals in coastal aquaculture. Reports and studies, vol 65. Food and Agriculture Organization, Rome, p 126Google Scholar
  49. King CK, Riddle MJ (2001) Effects of metal contaminants on the development of the common Antarctic sea urchin Sterechinus neumayeri and comparisons of sensitivity with tropical and temperate echinoids. Mar Ecol Prog Ser 215:143–154CrossRefGoogle Scholar
  50. Kobayashi N (1977) Preliminary experiments with sea urchin pluteus and metamorphosis in marine pollution bioassay. Publ Seto Mar Biol Lab 24(1):9–21Google Scholar
  51. Kobayashi N, Okamura H (2004) Effects of heavy metals on sea urchin embryo development. 1. Tracing the cause by the effects. Chemosphere 55(10):1403–1412CrossRefGoogle Scholar
  52. Kobayashi N, Tamato S, Harino H, Kitano M (2008) A bioassay using sea urchin egg development to identify organotin pollution in sea water. Coast Mar Sci 32(1):77–81Google Scholar
  53. Körner S, Das SK, Veenstra S, Vermaat JE (2001) The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquat Bot 71(1):71–78CrossRefGoogle Scholar
  54. Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N (2009) Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Environ 407(16):4610–4615CrossRefGoogle Scholar
  55. Kyerematen GA, Ogunlana EO (1987) An integrated approach to the pharmacological evaluation of traditional materia medica. J Ethnopharmacol 20(3):191–207CrossRefGoogle Scholar
  56. Lalumera GM, Calamari D, Galli P, Castiglioni S, Crosa G, Fanelli R (2004) Preliminary investigation on the environmental occurrence and effects of antibiotics used in aquaculture in Italy. Chemosphere 54(5):661–668CrossRefGoogle Scholar
  57. Lera S, Pellegrini D (2006) Evaluation of the fertilization capability of Paracentrotus Lividus sea urchin storaged gametes by the exposure to different aqueous matrices. Environ Monit Assess 119(1):1–13CrossRefGoogle Scholar
  58. Lera S, Macchia S, Pellegrini D (2006) Standardizing the methodology of sperm cell test with Paracentrotus Lividus. Environ Monit Assess 122(1):101–109CrossRefGoogle Scholar
  59. Littler MM, Murray SN (1975) Impact of sewage on the distribution, abundance and community structure of rocky intertidal macro-organisms. Mar Biol 30:277–291CrossRefGoogle Scholar
  60. Lorenzo JI, Nieto O, Beiras R (2002) Effect of humic acids on speciation and toxicity of copper to Paracentrotus lividus larvae in seawater. Aquat Toxicol 58(1–2):27–41CrossRefGoogle Scholar
  61. Losso C, Novelli AA, Picone M, Marchetto D, Pantani C, Ghetti PF et al (2007) Potential role of sulfide and ammonia as confounding factors in elutriate toxicity bioassays with early life stages of sea urchins and bivalves. Ecotoxicol Environ Saf 66(2):252–257CrossRefGoogle Scholar
  62. Mankiewicz-Boczek J, Nalecz-Jawecki G, Drobniewska A, Kaza M, Sumorok B, Izydorczyk K et al (2008) Application of a microbiotests battery for complete toxicity assessment of rivers. Ecotoxicol Environ Saf 71(3):830–836CrossRefGoogle Scholar
  63. Marín-Guirao L, Atucha AM, Barba JL, López EM, Fernández AJG (2005) Effects of mining wastes on a seagrass ecosystem: metal accumulation and bioavailability, seagrass dynamics and associated community structure. Mar Environ Res 60(3):317–337CrossRefGoogle Scholar
  64. Matranga V, Zito F, Costa C, Bonaventura R, Giarrusso S, Celi F (2010) Embryonic development and skeletogenic gene expression affected by X-rays in the Mediterranean sea urchin Paracentrotus lividus. Ecotoxicology 19(3):530–537CrossRefGoogle Scholar
  65. Moulin L, Catarino AI, Claessens T (1816) Dubois P (2011) Effects of seawater acidification on early development of the intertidal sea urchin Paracentrotus lividus (Lamarck 1816). Mar Pollut Bull 62(1):48–54CrossRefGoogle Scholar
  66. Muchmore D, Epel D (1973) The effects of chlorination of wastewater on fertilization in some marine invertebrates. Mar Biol 19(2):93–95CrossRefGoogle Scholar
  67. Muñoz I, Martínez Bueno MJ, Agüera A, Fernández-Alba AR (2010) Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environ Pollut 158(5):1809–1816CrossRefGoogle Scholar
  68. National Research Council (1993) Nutrient requirements of fish. Nutrient requirements of domestic animals. National Academy Press, Washington DC, p 114Google Scholar
  69. Nikaido H (2009) Multidrug resistance in bacteria. Annu Rev Biochem 78:46–119CrossRefGoogle Scholar
  70. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17(6):526–538CrossRefGoogle Scholar
  71. Pouliquen H, Delépée R, Larhantec-Verdier M, Morvan M-L, Le Bris H (2007) Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline, oxolinic acid, flumequine and florfenicol) in deionised water, freshwater and seawater under abiotic conditions. Aquaculture 262(1):23–28CrossRefGoogle Scholar
  72. Rey-Asensio A, Carballeira C, Viana IG, Carballeira A (2010) Biomonitorización de los efluentes de piscifactorías marinas instaladas en tierra: Bioacumulación de microcontaminantes. In: Rey-Méndez M. LC, Fernández Casal J, Guerra A (eds) Foro dos Recursos mariños e da Acuicultura das Rías galegas XIII. USC, O Grove, pp 201–218Google Scholar
  73. Ricco G, Tomei MC, Ramadori R, Laera G (2004) Toxicity assessment of common xenobiotic compounds on municipal activated sludge: comparison between respirometry and Microtox®. Water Res 38(8):2103–2110CrossRefGoogle Scholar
  74. Ritz C, Streibig JC (2005) Bioassay analysis using R. J Stat Softw 12(5):1–22Google Scholar
  75. Ritz C, Streibig JC (2012) Analysis of dose-response curves. Drc package, p 140. Available at: Accessed 21 Feb 2012
  76. Saco-Álvarez L, Durán I, Ignacio Lorenzo J, Beiras R (2010) Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality. Ecotoxicol Environ Saf 73(4):491–499CrossRefGoogle Scholar
  77. Sano LL, Mapili MA, Krueger A, Garcia E, Gossiaux D, Phillips K et al (2004) Comparative efficacy of potential chemical disinfectants for treating unballasted vessels. J Great Lakes Res 30(1):201–216CrossRefGoogle Scholar
  78. Sapkota A, Sapkota AR, Kucharski M, Burke J, McKenzie S, Walker P et al (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34(8):1215–1226CrossRefGoogle Scholar
  79. R Development Core Team (2008) R: A language and environment for statistical computing. Vienna Austria R Foundation for Statistical Computing (1), p 7Google Scholar
  80. Thomulka KW, McGee DJ, Lange JH (1993) Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water. Bull Environ Contam Toxicol 51(4):538–544CrossRefGoogle Scholar
  81. Tolls J (2001) Sorption of veterinary pharmaceuticals in soils: a review. Environ Sci Technol 35(17):3397–3406CrossRefGoogle Scholar
  82. United States Environmental Protection Agency (1994a) Short-term methods for estimating the chronic toxicity of effluents and receiving water to west coast marine and estuarine organisms, 3rd edn. USEPA, Cincinnati, p 370Google Scholar
  83. United States Environmental Protection Agency (1994b) ERL-Duluth’s aquatic ecotoxicology data systems. Accessed 14 Aug 2011
  84. United States Environmental Protection Agency (1995) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms, 1st edn. Office of Research and Development, Cincinnati, p 673Google Scholar
  85. Van der Grinten E, Pikkemaat MG, Van den Brandhof E-J, Stroomberg GJ, Kraak MHS (2010) Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80(1):1–6CrossRefGoogle Scholar
  86. Van Wijk DJ, Kroon SGM, Garttener-Arends ICM (1998) Toxicity of chlorate and chlorite to selected species of algae, bacteria, and fungi. Ecotoxicol Environ Saf 40(3):206–211CrossRefGoogle Scholar
  87. Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671CrossRefGoogle Scholar
  88. Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40(7):723–730CrossRefGoogle Scholar
  89. World Health Organization (1993) Biomarkers and risk assessment: concepts and principles. Environmental health criteria, vol 155. WHO, Geneva, p 82Google Scholar
  90. Xu X, Li Y, Wang Y, Wang Y (2011) Assessment of toxic interactions of heavy metals in multi-component mixtures using sea urchin embryo-larval bioassay. Toxicol In Vitro 25(1):294–300CrossRefGoogle Scholar
  91. Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J (2011) Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J Hazard Mater 185(2–3):1256–1263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C. Carballeira
    • 1
    Email author
  • M. R. De Orte
    • 1
  • I. G. Viana
    • 2
  • T. A. DelValls
    • 1
  • A. Carballeira
    • 3
  1. 1.Departamento de Química Física, Facultad de Ciencias del Mar y AmbientalesCátedra UNESCO/UNITWIN/WICOPPuerto RealSpain
  2. 2.Centro Costero de A CoruñaInstituto Español de OceanografíaA CoruñaSpain
  3. 3.Departamento de Ecología, Ecotoxicología, Facultad de BiologíaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations