Metal Accumulation From Dietary Exposure in the Sea Urchin, Strongylocentrotus droebachiensis

  • Gretchen K. Bielmyer
  • Tayler A. Jarvis
  • Benjamin T. Harper
  • Brittany Butler
  • Lawrence Rice
  • Siobhan Ryan
  • Peter McLoughlin


Metal contamination is a common problem in aquatic environments and may result in metal bioaccumulation and toxicity in aquatic biota. Recent studies have reported the significance of dietary metal accumulation in aquatic food chains, particularly in species of lower trophic levels. This research investigated the accumulation and effects of dietary metals in a macroinvertebrate. The seaweed species Ulva lactuca and Enteromorpha prolifera were concurrently exposed to five metals (copper, nickel, lead, cadmium, and zinc) and then individually fed to the green sea urchin Strongylocentrotus droebachiensis for a period of 2 weeks. Body mass, test length, total length, and coelomic fluid ion concentration and osmolality were measured. The sea urchins were also dissected and their organs (esophagus, stomach, intestine, gonads, and rectum) digested and analyzed for metals. The results demonstrated that metal accumulation and distribution varied between seaweed species and among metals. In general, there were greater concentrations of metals within the sea urchins fed E. prolifera compared with those fed U. lactuca. All of the metals accumulated within at least one organ of S. droebachiensis, with Cu being most significant. These results indicate that E. prolifera may accumulate metals in a more bioavailable form than within U. lactuca, which could impact the grazer. In this study, no significant differences in body length, growth, or coelomic fluid ion concentration and osmolality were detected between the control and metal-exposed sea urchins after the 2-week testing period. This research presents new data concerning metal accumulation in a marine herbivore after dietary metal exposure.


Metal Accumulation Coelomic Fluid Seaweed Species Strongylocentrotus Droebachiensis Longe Exposure Duration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Bryan Murphy for contributions to this research. Funding was provided by a Valdosta State University Seed Grant.


  1. Abdallah MA, Abdallah AM (2007) Biomonitoring study of heavy metals in biota and sediments in the South Eastern coast of Mediterranean Sea. Egypt Environ Monit Assess 146:139–145CrossRefGoogle Scholar
  2. Ablanedo N, Gonzalez H, Ramirez M (1990) Evaluacion del erizo de mar Echinometra lucunter como indicador de contaminacion por metales pesados. Cuba Aquat Living Resour 3:113–120CrossRefGoogle Scholar
  3. Ahearn GA (2010) Heavy metal transport and detoxification in crustacean gastrointestinal and renal epithelial cells. In: Koropatnick J, Zalups RK (eds) Cellular and molecular biology of metals. Taylor and Francis, London, pp 295–326CrossRefGoogle Scholar
  4. Ahn I, Jungyoung J, Park H (2009) Metal accumulation in sea urchins and their kelp diet in an Arctic fjord (Kongsfjorden, Svalbard). Mar Pollut Bull 58:1571–1577CrossRefGoogle Scholar
  5. Angerer L, Hussain S, Wei Z, Livingston BT (2006) Sea urchin metalloproteases: a genomic survey of the BMP-1/tolloid-like MMP and ADAM families. Dev Biol 300:267–281CrossRefGoogle Scholar
  6. Areco MM, Afonso MS (2010) Copper, zinc, cadmium and lead biosorption by Gymnogongrus torulosus. Thermodynamics and kinetics studies. Colloids Surf B 81:620–628CrossRefGoogle Scholar
  7. Augier H, Ramonda G, Rolland J, Santimone M (1989) Teneurs en metaux lourds des oursins comestibles Paracentrotus lividus (Lamarck) preleves dans quatre secteurs tests du littoral de Marseille (Mediterranee, France). Vie Mar HS 10:226–239Google Scholar
  8. Bargagli R, Sanchez-Hernandez JC, Martella L, Monaci F (1998) Mercury, cadmium and lead accumulation in Antarctic mosses growing along nutrient and moisture gradients. Polar Biol 19:316–322CrossRefGoogle Scholar
  9. Bielmyer GK (2000) Toxicity of ligand-bound silver to Ceriodaphnia dubia. Master’s Thesis, Clemson University, Clemson, SCGoogle Scholar
  10. Bielmyer GK, Grosell M (2010) Emerging issues in marine metal toxicity. In: Bury N, Handy R (eds) Essential reviews in experimental biology, vol 2., Kings CollegeLondon, UK, pp 129–158Google Scholar
  11. Bielmyer GK, Brix KV, Capo TR, Grosell M (2005) The effect of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat Toxicol 74:254–263CrossRefGoogle Scholar
  12. Bielmyer GK, Grosell M, Brix KV (2006) Toxicity of silver, zinc, copper, and nickel to the copepod, Acartia tonsa, exposed via a phytoplankton diet. Environ Sci Technol 40:2063–2068CrossRefGoogle Scholar
  13. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283CrossRefGoogle Scholar
  14. Brown MT, Hodgkinson WM, Hurd CL (1999) Spatial and temporal variations in the copper and zinc concentrations of two green seaweeds from Otago Harbour, New Zealand. Mar Environ Res 47:175–184CrossRefGoogle Scholar
  15. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454CrossRefGoogle Scholar
  16. Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263Google Scholar
  17. Cebrian E, Marti R, Uriz JM, Turon X (2003) Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: Metal accumulation and biological responses. Mar Pollut Bull 46:1273–1284CrossRefGoogle Scholar
  18. Chaudhuri A, Mitra M, Havrilla C, Waguespack Y, Schwarz J (2007) Heavy metal biomonitoring by seaweeds on the Delmarva Peninsula, east coast of the USA. Bot Mar 50:151–158CrossRefGoogle Scholar
  19. De Shamphalaere KAC, Canli M, Lierde VV, Forrez I, Vanhaecke F, Janssen CR (2004) Reproductive toxicity of dietary zinc to Daphnia magna. Aquat Toxicol 70:233–244CrossRefGoogle Scholar
  20. El-Rayis OA, Abouldahab O, Halim Y, Riley JP (1997) Levels of trace metals in some food chain organisms from El-Mex Bay, west of Alexandria, Egypt. In: Proceedings of the 7th international conference: environment protection is a must. Alexandria University and USPD, Alexandria, pp 20–22, 26–35Google Scholar
  21. Falconer F (2001) The consumption of algae, Ulva lactuca, by the snail, Littorina littorea, in relation to colliery waste contamination. Mar Freshw Behav Physiol 34:249–255CrossRefGoogle Scholar
  22. Fernández N, Beiras R (2001) Combined toxicity of dissolved mercury with copper, lead and cadmium on embryogenesis and early larval growth of the Paracentrotus lividus sea urchin. Ecotoxicology 10:263–271CrossRefGoogle Scholar
  23. Flammang P, Warnau M, Temara A, Lane DJW, Jangoux M (1997) Heavy metals in Diadema setosum (Echinodermata Echinoidea) from Singapore coral reefs. J Sea Res 38:35–45CrossRefGoogle Scholar
  24. Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422Google Scholar
  25. Gallego SG, Loukas A, Slade RW, Neva FA, Varatharajalu R, Nutman TB et al (2005) Identification of an astacin-like metallo-proteinase transcript from the infective larvae of Strongyloides stercoralis. Parasitol Int 54:123–133CrossRefGoogle Scholar
  26. Gaudry A, Zeroual S, Gaie-Levrel F, Moskura M, Boujrhal FZ, Cherkaoui EL et al (2007) Heavy metals pollution of the Atlantic marine environment by the Moroccan phosphate industry, as observed through their bioaccumulation in Ulva lactuca. Water Air Soil Pollut 178:267–285CrossRefGoogle Scholar
  27. Goodyear KL, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229:1–19CrossRefGoogle Scholar
  28. Guan R, Wang W (2004) Dietary assimilation and elimination of Cd, Se, and Zn by Daphnia magna at different metal concentrations. Environ Toxicol Chem 23:2689–2698CrossRefGoogle Scholar
  29. Haritonidis S, Malea P (1995) Seasonal and local variation of Cr, Ni, and Co concentrations in Ulva rigida C Agardh and Enteromorpha linza (Linnaeus) from Thermaikos Gulf, Greece. Environ Pollut 89:319–327CrossRefGoogle Scholar
  30. Haritonidis S, Malea P (1999) Bioaccumulation of metals by the green alga Ulva rigida from Thermaikos Gulf, Greece. Environ Pollut 104:365–372CrossRefGoogle Scholar
  31. Ho YB (1990) Metals in Ulva lactuca in Hong Kong Intertidal Waters. Bull Mar Sci 47:79–85Google Scholar
  32. Hook SE, Fisher NS (2001a) Reproductive toxicity of metals in calanoid copepods. Mar Biol 138:1131–1140CrossRefGoogle Scholar
  33. Hook SE, Fisher NS (2001b) Sublethal effects of silver in zooplankton: importance of exposure pathways and implications for toxicity testing. Environ Toxicol Chem 20:568–574CrossRefGoogle Scholar
  34. Hook SE, Fisher NS (2002) Relating the reproductive toxicity of five ingested metals in calanoid copepods with sulfur affinity. Mar Environ Res 53:161–174CrossRefGoogle Scholar
  35. Hornberger MI, Luoma SN, Cain DJ, Parchaso F, Brown CL, Bouse RM et al (2000) Linkage of bioaccumulation and biological effects to changes in pollutant loads in south San Francisco Bay. Environ Sci Technol 34:2401–2409CrossRefGoogle Scholar
  36. Knauer K, Behra R, Sigg L (1997) Effects of free Cu2+ and Zn2+ ions on growth and metal accumulation in freshwater algae. Environ Toxicol Chem 16:220–229Google Scholar
  37. Kobayashi N (1971) Fertilized sea urchin eggs as indicatory materials for marine pollution bioassay, preliminary experiment. Publ Seto Mar Biol Lab 18:379–406Google Scholar
  38. Kobayashi N (1980) Comparative sensitivity of various developmental stages of sea urchins to some chemicals. Mar Biol 58:163–171CrossRefGoogle Scholar
  39. Lau TC, Ang PO, Wong PK (2003) Development of seaweed biomass as a biosorbent for metal ions. Water Sci Technol 47:49–54Google Scholar
  40. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931CrossRefGoogle Scholar
  41. Mance G (1987) Pollution threat of heavy metals in aquatic environments. Elsevier, New York, pp 1–8CrossRefGoogle Scholar
  42. Matthiessen P, Law R (2002) Contaminants and their effects on estuarine and coastal organisms in the United Kingdom in the late twentieth century. Environ Pollut 120:739–757Google Scholar
  43. Meyer JS, Adams WJ, Brix KV, Luoma SN, Mount DR, Stubblefied WA et al (2002) Toxicity of dietborne metals to aquatic organisms. Society of Environmental Toxicology and Chemistry Press, PensacolaGoogle Scholar
  44. Misheer N, Kindness A, Jonnalagadda SB (2006) Seaweeds along KwaZulu-Natal coast of South Africa—3: elemental uptake by Ulva lactuca (sea lettuce). J Environ Sci Health A Tox Hazard Subst Environ Eng 41:1249–1259Google Scholar
  45. Murphy V, Hughes H, McLoughlin P (2009a) Enhancment strategies for Cu(II), Cr(III), and Cr(VI) remediation by a variety of seaweed species. J Hazard Mater 166:318–326CrossRefGoogle Scholar
  46. Murphy V, Tofail SAM, Hughes H, McLoughlin P (2009b) A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chem Eng J 148:425–433CrossRefGoogle Scholar
  47. Omar HH (2008) Biosorption of copper, nickel and manganese using non-living biomass of marine alga, Ulva lactuca. Pak J Biol Sci 11:964–973CrossRefGoogle Scholar
  48. Orduña-Rojas J, Longoria-Espinoza RM (2006) Metal content in Ulva lactuca (Linnaeus) from Navachiste Bay (southeast Gulf of California) Sinalao, Mexico. Bull Environ Contam Toxicol 77:574–580CrossRefGoogle Scholar
  49. Orren MJ, Eagle GA, Hennig HF, Green A (1980) Variations in trace metal content of the mussel Choromytilus meridionalis (Kr.) with season and sex. Mar Pollut Bull 11:253–257CrossRefGoogle Scholar
  50. Pan K, Wang WX (2008) The subcellular fate of cadmium and zinc in the scallop Chlamys nobilis during waterborne and dietary metal exposure. Aquat Toxicol 90:253–260CrossRefGoogle Scholar
  51. Pearce CM, Daggett TL, Robinson SMC (2003) Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 233:337–367CrossRefGoogle Scholar
  52. Phillips DJH (1990) Use of macroalgae and invertebrates as monitors of metal levels in estuaries and coastal waters. In: Furness RW, Rainbow PS (eds) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 81–99Google Scholar
  53. Phillips K, Hamid N, Silcock P, Delahunty C, Barker M, Bremer P (2009) Effect of season on the sensory quality of sea urchin (Evechinus chloroticus) roe. J Food Sci 75:20–30CrossRefGoogle Scholar
  54. Radenac G, Fichet D, Miramand P (2000) Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar Environ Res 51:151–166CrossRefGoogle Scholar
  55. Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Eviron Int 33:576–582Google Scholar
  56. Rijstenbil JW, Haritonidis S, Malea P, Seferlis M, Wijnholds JA (2006) Thiol pools and glutathione redox ratios as possible indicators of copper toxicity in the green macroalgae Enteromorpha spp. from the Scheldt Estuary (SW Netherlands, Belgium) and Thermaikos Gulf (Greece, N Aegean Sea). Hydrobiologia 385:171–181CrossRefGoogle Scholar
  57. Schäfer S, Bickmeyer U, Koehler A (2009) Measuring Ca2+-signaling at fertilization in the sea urchin Psammechinus miliaris: Alterations of this Ca2+-signal by copper and 2,4,6-tribromophenol. Comp Biochem Physiol C Toxicol Pharmacol 150:261–269CrossRefGoogle Scholar
  58. Selck H, Forbes VE (2004) The relative importance of water and diet for uptake and subcellular distribution of cadmium in the deposit-feeding polychaete, Capitella sp. I. Mar Environ Res 57:261–279CrossRefGoogle Scholar
  59. Soualili D, Dubois P, Gosselin P, Pernet P, Guillou M (2008) Assessment of seawater pollution by heavy metals in the neighbourhood of Algiers: use of the sea urchin Paracentrotus lividus as a bioindicator. J Mar Sci 65:132–139Google Scholar
  60. Stephens RE (1972) Studies on the development of the sea urchin Strongylocentrotus droebachiensis. I. Ecology and normal development. Biol Bull 142:132–144CrossRefGoogle Scholar
  61. Storelli MM, Stelli A, Marcotrigiano GO (2001) Heavy metals in the aquatic environment of the Southern Adriatic Sea, Italy: macroalgae, sediments and benthic species. Environ Int 26:505–509CrossRefGoogle Scholar
  62. Tupperwien S, Behra R, Sigg L (2007) Competition among zinc, manganese, and cadmium uptake in the freshwater alga Scenedesmus vacuolatus. Environ Toxicol Chem 26:483–490CrossRefGoogle Scholar
  63. Villares R, Puente X, Carballeira A (2002) Seasonal variation and background levels of heavy metals in two green seaweeds. Environ Pollut 119:79–90CrossRefGoogle Scholar
  64. Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves II: significance of trophically available metal (TAM). Mar Ecol Prog Ser 257:125–137CrossRefGoogle Scholar
  65. Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmen-talization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197CrossRefGoogle Scholar
  66. Wang W-X (2001) Comparison of metal uptake and absorption efficiency in marine bivalves. Environ Toxicol Chem 20:1367–1373CrossRefGoogle Scholar
  67. Wang W-X, Ke CH (2002) Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods. Aquat Toxicol 56:153–165CrossRefGoogle Scholar
  68. Wang W-X, Fisher NS, Luoma SN (1996) Kinetic determinations of trace element bioaccumulation in the mussel Mytilus edulis. Mar Ecol Prog Ser 140:91–113CrossRefGoogle Scholar
  69. Watling HR, Watling RJ (1976) Trace metals in Choromytilus meridionalis. Mar Pollut Bull 7:91–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Gretchen K. Bielmyer
    • 1
  • Tayler A. Jarvis
    • 1
  • Benjamin T. Harper
    • 1
  • Brittany Butler
    • 1
  • Lawrence Rice
    • 1
  • Siobhan Ryan
    • 2
  • Peter McLoughlin
    • 2
  1. 1.Department of BiologyValdosta State UniversityValdostaUSA
  2. 2.Waterford Institute of TechnologyWaterfordIreland

Personalised recommendations