Sodium Fluxes in Tamoatá, Hoplosternum litoralle, Exposed to Formation Water from Urucu Reserve (Amazon, Brazil)

  • Bernardo Baldisserotto
  • Luciano O. Garcia
  • Ana Paula Benaduce
  • Rafael M. Duarte
  • Thiago L. Nascimento
  • Levy C. Gomes
  • Adriana R. Chippari Gomes
  • Adalberto L. Val
Article

Abstract

Formation water (produce water or oil field brine) from oil and gas production usually has high concentrations of soluble salts and metals. The objective of this study was to examine the effect of formation water from Urucu Reserve, Amazon, on whole-body uptake and internal distribution of newly accumulated Na+ in juvenile tamoatá, Hoplosternum litoralle. Groups of fish were submitted to nine treatments for 3 h in 400-ml chambers: control (well water), 5% formation water, and well water with respective concentrations of 5% formation water of Ca2+, Fe, Mn, Ba2+, Fe + Ca2+, Mn + Ca2+, and Ba + Ca2+ added. Specimens of tamoatá exposed to 5% formation water presented a very high Na+ influx, probably due to the high Na+ levels in this water. Waterborne Fe and Mn stimulated Na+ influx, but Fe increased Na+ efflux, causing Na+ loss. Waterborne Mn, on the other hand, decreased Na+ efflux, reducing Na+ loss by this species. Waterborne Ca2+ also affected Na+ influx but had no significant effect on net Na+ fluxes. These results demonstrated that spilling of formation water in ion-poor Amazon rivers would dramatically disrupt osmoregulatory balance of tamoatá and probably other Amazon fish species, impairing their survival and reduce biodiversity.

References

  1. Baldisserotto B, Copatti CE, Gomes LC, Chagas EC, Brinn RP, Roubach R (2008) Net ion fluxes in the facultative air-breather Hoplosternum littorale (tamoata) and the obligate air-breather Arapaima gigas (pirarucu) exposed to different Amazonian waters. Fish Physiol Biochem 34:405–412CrossRefGoogle Scholar
  2. Bury NR, Grosell M (2003) Waterborne iron acquisition by a freshwater teleost fish, zebrafish Danio rerio. J Exp Biol 206:3529–3535CrossRefGoogle Scholar
  3. Caliani I, Porcelloni S, Mori G, Frenzilli G, Ferraro M, Marsili L, Casini S, Fossi MC (2009) Genotoxic effects of produced waters in mosquito fish (Gambusia affinis). Ecotoxicology 18:75–80CrossRefGoogle Scholar
  4. Casini S, Marsili L, Fossi MC, Mori G, Bucalossi D, Porcelloni S, Caliani I, Stefanini G, Ferraro M, di Catenaja CA (2006) Use of biomarkers to investigate toxicological effects of produced water treated with conventional and innovative methods. Mar Environ Res 62:S347–S351CrossRefGoogle Scholar
  5. CONAMA (Conselho Nacional do Meio Ambiente) (2005) Resolução CONAMA no 357, from March 17, 2005. Diário Oficial União 53(1):58–63Google Scholar
  6. Cooper CA, Shayeghi M, Techau ME, Capdevila DM, MacKenzie S, Durrant C, Bury NR (2007) Analysis of the rainbow trout solute carrier 11 family reveals iron import ≤pH 7.4 and a functional isoform lacking transmembrane domains 11 and 12. FEBS Lett 581:2599–2604CrossRefGoogle Scholar
  7. Fish JT (2009) Groundwater water treatment for iron and manganese reduction and fish rearing studies applied to the design of the Ruth Burnett Sport Fish Hatchery, Fairbanks, Alaska. Aquat Eng 41:97–108CrossRefGoogle Scholar
  8. Gonzalez RJ, Preest MR (1999) Ionoregulatory specializations for exceptional tolerance of ion-poor acidic waters in the neon tetra (Paracheirodon innesi). Physiol Biochem Zool 72:156–163CrossRefGoogle Scholar
  9. Gonzalez RJ, Wilson RW (2001) Patterns of ion regulation in acidophilic fish native to the ion-poor, acidic Rio Negro. J Fish Biol 58:1680–1690CrossRefGoogle Scholar
  10. Gonzalez RJ, Wood CM, Wilson RW, Patrick ML, Bergman HL, Narahara A, Val AL (1998) Effects of water pH and calcium concentration on ion balance in fish of the Rio Negro, Amazon. Physiol Zool 71:15–22CrossRefGoogle Scholar
  11. Gonzalez RJ, Wilson RW, Wood CM, Patrick ML, Val AL (2002) Diverse strategies for ion regulation in fish collected from the ion-poor, acidic Rio Negro. Physiol Biochem Zool 75:37–47CrossRefGoogle Scholar
  12. Graham J (1997) Air-breathing fishes: evolution, diversity, and adaptation. Academic Press, LondonGoogle Scholar
  13. Grippo RS, Dunson WA (1996) The body ion loss biomarker. 1. Interactions between trace metals and low pH in reconstituted coal mine-polluted water. Environ Toxicol Chem 15:1955–1963CrossRefGoogle Scholar
  14. Grosell MH, Hogstrand C, Wood CM (1997) Cu uptake and turnover in both Cu-acclimated and non-acclimated rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 38:257–276CrossRefGoogle Scholar
  15. Hoffmann EK, Hoffmann E, Lang F, Zadunaisky JA (2002) Control of Cl–transport in the operculum epithelium of Fundulus heteroclitus: long- and short-term salinity adaptation. Biochim Biophys Acta-Biomemb 1566:129–139CrossRefGoogle Scholar
  16. Hogstrand C, Wilson RW, Polgar D, Wood CM (1994) Effects of zinc on the kinetics of branchial uptake in freshwater rainbow trout during adaptation to waterborne zinc. J Exp Biol 186:55–73Google Scholar
  17. Holdway DA (2002) The acute and chronic effects of wastes associated with offshore oil and gas production on temperate and tropical marine ecological processes. Mar Pollut Bull 44:185–203CrossRefGoogle Scholar
  18. Holth TF, Nourizadeh-Lillabadi R, Blaesbjerg M, Grung M, Holbech H, Petersen GI, Alestrom P, Hylland K (2008) Differential gene expression and biomarkers in zebrafish (Danio rerio) following exposure to produced water components. Aquat Toxicol 90:277–291CrossRefGoogle Scholar
  19. Hunn JB (1985) Role of calcium in gill function in freshwater fishes. Comp Biochem Physiol A 82:543–547CrossRefGoogle Scholar
  20. Jackson RE, Reddy KJ (2007) Trace element chemistry of coal bed natural gas produced water in the Powder River Basin, Wyoming. Environ Sci Technol 41:5953–5959CrossRefGoogle Scholar
  21. Lie KK, Meier S, Olsvik PA (2009) Effects of environmental relevant doses of pollutants from offshore oil production on Atlantic cod (Gadus morhua). Comp Biochem Physiol C 150:141–149Google Scholar
  22. Maco Garcia JT (1997) Influência da água de formação da extração de petróleo do Rio Urucu sobre aspectos hematológicos e conteúdo iônico de Colossoma macropomum e Glyptoperichthys joselimaianus. MSc thesis, Instituto Nacional de Pesquisa da Amazônia/Universidade do Amazonas, ManausGoogle Scholar
  23. Manfra L, Moltedo G, Lamberti CV, Maggi C, Finoia MG, Giuliani S, Onorati F, Gabellini M, Di Mento R, Cicero AM (2007) Metal content and toxicity of produced formation water (PFW): study of the possible effects of the discharge on marine environment. Arch Environ Contam Toxicol 53:183–190CrossRefGoogle Scholar
  24. McDonald DG, Tang Y, Boutilier RG (1989) Acid and ion transfer across the gills of fish: mechanisms and regulation. Can J Zool 67:3046–3054CrossRefGoogle Scholar
  25. Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta-Mol Cell Res 1763:609–620CrossRefGoogle Scholar
  26. Pantaleão SD, Alcantara AV, Alves JDH, Spano MA (2006) The piscine micronucleus test to assess the impact of pollution on the Japaratuba River in Brazil. Environ Mol Mutagen 47:219–224CrossRefGoogle Scholar
  27. Petróbras (2008) Provincia petrolífera de Urucu. O desafio de produzir ouro negro na Amazônia. http://www2.petrobras.com.br/minisite/urucu/urucu.html. Accessed 28 Jan 2010
  28. Prodocimo V, Galvez F, Freire CA, Wood CM (2007) Unidirectional Na+ and Ca2+ fluxes in two euryhaline teleost fishes, Fundulus heteroclitus and Oncorhynchus mykiss, acutely submitted to a progressive salinity increase. J Comp Physiol B 177:519–528CrossRefGoogle Scholar
  29. Rafii B, Coutinho C, Otulakowski G, O’Brodovich H (2000) Oxygen induction of epithelial Na+ transport requires heme proteins. Am J Physiol C 278:L399–L406Google Scholar
  30. Reader JP, Morris R (1988) Effects of aluminum and pH on calcium fluxes, and effects of cadmium and manganese on calcium and sodium fluxes in brown trout (Salmo trutta L.). Comp Biochem Physiol C 91:449–457CrossRefGoogle Scholar
  31. Stephens SM, Frankling SC, Stagg RM, Brown JA (2000) Sub-lethal effects of exposure of juvenile turbot to oil produced water. Mar Pollut Bull 40:928–937CrossRefGoogle Scholar
  32. Sundt RC, Baussant T, Beyer J (2009) Uptake and tissue distribution of C4–C7 alkylphenols in Atlantic cod (Gadus morhua): relevance for biomonitoring of produced water discharges from oil production. Mar Pollut Bull 58:72–79CrossRefGoogle Scholar
  33. Val AL, Almeida-Val VMF (1995) Fishes of the Amazon and their environments. Physiological and biochemical features. Springer-Verlag, HeidelbergGoogle Scholar
  34. Wood CM (1992) Flux measurements as indices of H+ and metal effects on freshwater fish. Aquat Toxicol 22:239–264CrossRefGoogle Scholar
  35. Woodall DW, Rabalais NN, Gambrell RP, DeLaune RD (2003) Comparing methods and sediment contaminant indicators for determining produced water fate in a Louisiana estuary. Mar Pollut Bull 46:731–740CrossRefGoogle Scholar
  36. Zhu SQ, King SC, Haasch ML (2008) Biomarker induction in tropical fish species on the Northwest Shelf of Australia by produced formation water. Mar Environ Res 65:315–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bernardo Baldisserotto
    • 1
  • Luciano O. Garcia
    • 2
  • Ana Paula Benaduce
    • 3
  • Rafael M. Duarte
    • 4
  • Thiago L. Nascimento
    • 4
  • Levy C. Gomes
    • 5
  • Adriana R. Chippari Gomes
    • 5
  • Adalberto L. Val
    • 4
  1. 1.Departamento de Fisiologia e FarmacologiaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Estação Marinha de Aquacultura, Instituto de Oceanografia Universidade Federal do Rio GrandeRio GrandeBrazil
  3. 3.Department of Biological SciencesFlorida International UniversityMiamiUSA
  4. 4.Laboratório de Ecofisiologia e Evolução MolecularInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  5. 5.Centro Universitário Vila VelhaVila VelhaBrazil

Personalised recommendations