Role of Vegetation in a Constructed Wetland on Nutrient–Pesticide Mixture Toxicity to Hyalella azteca

  • Richard E. LizotteJr.
  • Matthew T. Moore
  • Martin A. Locke
  • Robert Kröger


The toxicity of a nutrient–pesticide mixture in nonvegetated and vegetated sections of a constructed wetland (882 m2 each) was assessed using Hyalella azteca 48-h aqueous whole-effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple superphosphate, diazinon, and permethrin simulating storm-event agricultural runoff. Aqueous samples were collected at inflow, middle, and outflow points within each section 5 h, 24 h, 72 h, 7 days, 14 days, and 21 days postamendment. Nutrients and pesticides were detected throughout both wetland sections with concentrations longitudinally decreasing more in vegetated than nonvegetated section within 24 h. Survival effluent dilution point estimates—NOECs, LOECs, and LC50s—indicated greatest differences in toxicity between nonvegetated and vegetated sections at 5 h. Associations of nutrient and pesticide concentrations with NOECs indicated that earlier toxicity (5–72 h) was from permethrin and diazinon, whereas later toxicity (7–21 days) was primarily from diazinon. Nutrient–pesticide mixture concentration–response assessment using toxic unit models indicated that H. azteca toxicity was due primarily to the pesticides diazinon and permethrin. Results show that the effects of vegetation versus no vegetation on nutrient–pesticide mixture toxicity are not evident after 5 h and a 21-day retention time is necessary to improve H. azteca survival to ≥90% in constructed wetlands of this size.



The authors wish to thank Lisa Brooks, James Hill, and Renee Russell for analytical assistance. Mention of equipment, computer programs, or a pesticide neither constitutes an endorsement for use by the US Department of Agriculture nor does it imply pesticide registration under FIFRA as amended. All programs and services of the USDA are offered on a nondiscriminatory basis without regard to race, color, national origin, sex, marital status, or handicap.


  1. Allan IJ, House WA, Parker A, Carter JE (2005) Diffusion of the synthetic pyrethroid permethrin into bed sediments. Environ Sci Technol 39:523–530. doi: 10.1021/es040054z CrossRefGoogle Scholar
  2. Ankley GT, Schubauer-Berigan MK, Monson PD (1995) Influence of pH and hardness on toxicity of ammonia to the amphipod Hyalella azteca. Can J Fish Aquat Sci 52:2078–2083CrossRefGoogle Scholar
  3. APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, Washington, DCGoogle Scholar
  4. Bouldin JL, Farris JL, Moore MT, Smith S, Cooper CM (2007) Assessment of diazinon toxicity in sediment and water of constructed wetlands using deployed Corbicula fluminea and laboratory testing. Arch Environ Contam Toxicol 53:174–182. doi: 10.1007/s00244-006-0180-6 CrossRefGoogle Scholar
  5. US Census Bureau (2009) US & world population clocks. US Census Bureau, Population Division.
  6. Burkepile DE, Moore MT, Holland MM (2000) Susceptibility of five nontarget organisms to aqueous diazinon exposure. Bull Enviorn Contam Toxicol 64:114–121CrossRefGoogle Scholar
  7. Burkhardt-Holm P, Schuerer K (2007) Application of the weight-of-evidence approach to assess the decline of brown trout (Salmo trutta) in Swiss rivers. Aquat Sci 69:51–70. doi: 10.1007/s00027-006-0841-6 CrossRefGoogle Scholar
  8. Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32:831–849. doi: 10.1016/j.envint.2006.05.002 CrossRefGoogle Scholar
  9. Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267. doi: 10.1016/j.chemosphere.2004.10.044 CrossRefGoogle Scholar
  10. Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998) Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8:559–568CrossRefGoogle Scholar
  11. FAO (Food and Agriculture Organization of the United Nations) (2009) FAO Statistical database, FAOSTAT.
  12. Huddleston GM, Gillespie WB, Rodgers JH (2000) Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotox Environ Safety 45:188–193. doi: 10.1006/eesa.1999.1852 CrossRefGoogle Scholar
  13. Hunt J, Anderson B, Phillips B, Tjeerdema R, Largay B, Beretti M, Bern A (2008) Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems. Environ Pollut 156:348–358. doi: 10.1016/j.envpol.2008.02.004 CrossRefGoogle Scholar
  14. Locke MA, Knight SS, Smith S, Cullum RF, Zablotowicz RM, Yuan Y, Bingner RL (2008) Environmental quality research in the Beasley Lake watershed, 1995–2007: succession from conventional to conservation practices. J Soil Water Conserv 63:430–442. doi: 10.2489/jswc.63.6.430 CrossRefGoogle Scholar
  15. López-Flores R, Quintana XD, Salvadó V, Hidalgo M, Sala L, Moreno-Amich R (2003) Comparison of nutrient and contaminant fluxes in two areas with different hydrological regimes (Empordà Wetlands, NE Spain). Water Res 37:3034–3046. doi: 10.1016/S0043-1354(03)00109-X CrossRefGoogle Scholar
  16. McDowell LL, Willis GH, Murphree CE (1989) Nitrogen and phosphorus yields in run-off from silty soils in the Mississippi Delta. U.S.A. Agric Ecosyst Environ 25:119–137CrossRefGoogle Scholar
  17. Moore MT, Cooper CM, Smith S Jr, Cullum RF, Knight SS, Locke MA, Bennett ER (2007) Diazinon mitigation in constructed wetlands: influence of vegetation. Water Air Soil Pollut 184:313–321. doi: 10.1007/s11270-007-9418-9 CrossRefGoogle Scholar
  18. Moore MT, Denton DL, Cooper CM, Wrysinski J, Miller JL, Reece K, Crane D, Robbins P (2008) Mitigation assessment of drainage ditches for collecting irrigation runoff in California. J Environ Qual 37:486–493. doi: 10.2134/jeq2007.0172 CrossRefGoogle Scholar
  19. Moore MT, Kröger R, Cooper CM, Smith S Jr (2009a) Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments. Arch Environ Contam Toxicol 57:282–288. doi: 10.1007/s00244-009-9334-7 CrossRefGoogle Scholar
  20. Moore MT, Lizotte RE, Kröger R (2009b) Efficiency of experimental rice fields (Oryza sativa L.) in mitigating diazinon runoff toxicity to Hyalella azteca. Bull Environ Contam Toxicol 82:777–780. doi: 10.1007/s00128-009-9696-6 CrossRefGoogle Scholar
  21. Murphy R, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  22. Pape-Lindstrom PA, Lydy MJ (1997) Synergistic toxicity of atrazine and organophosphate insecticides contravenes the response addition mixture model. Environ Toxicol Chem 16:2415–2420CrossRefGoogle Scholar
  23. Reddy KR, DeLaune RD (2008) Biogeochemistry of wetlands: Science and applications. CRC Press, Boca RatonCrossRefGoogle Scholar
  24. Scheffer M (2004) Ecology of shallow lakes. Kluwer Academic, DordrechtGoogle Scholar
  25. Schulz R, Peall SKC (2001) Effectiveness of a constructed wetland for retention of non-point source pesticide pollution in the Lourens River catchment, South Africa. Environ Sci Technol 35:422–426CrossRefGoogle Scholar
  26. Schulz R, Moore MT, Bennett ER, Milam CD, Bouldin JL, Farris JL, Smith S Jr, Cooper CM (2003) Acute toxicity of methyl-parathion in wetland mesocosms: assessing the influence of aquatic plants using laboratory testing with Hyalella azteca. Arch Environ Contam Toxicol 45:331–336. doi: 10.1007/s00244-003-2170-2 CrossRefGoogle Scholar
  27. Sharom MS, Solomon KR (1981) Adsorption–desorption, degradation, and distribution of permethrin in aqueous systems. J Agric Food Chem 29:1122–1125CrossRefGoogle Scholar
  28. Sherrard RM, Beard JS, Murray-Gulde CL, Rodgers JH, Shah YT (2004) Feasibility of constructed wetlands for removing chlorothalonil and chlorpyrifos from aqueous mixtures. Environ Pollut 127:385–394. doi: 10.1016/j.envpol.2003.08.017 CrossRefGoogle Scholar
  29. Smith S Jr, Cooper CM (2004) Pesticides in shallow groundwater and lake water in the Mississippi Delta MSEA. In: Nett M, Locke M, Pennington D (eds) Water quality assessments in the Mississippi Delta: regional solutions, national scope. ACS Symposium Series, vol 877. American Chemical Society, Oxford University Press, Chicago, p 91Google Scholar
  30. Smith S, Lizotte RE (2007) Influence of selected water quality characteristics on the toxicity of λ-cyhalothrin and γ-cyhalothrin to Hyalella azteca. Bull Environ Contam Toxicol 79:548–551. doi: 10.1007/s00128-007-9253-0 CrossRefGoogle Scholar
  31. Spieles DJ, Mitsch WJ (2000) Macroinvertebrate community structure in high- and low-nutrient constructed wetlands. Wetlands 20:716–729CrossRefGoogle Scholar
  32. USEPA (US Environmental Protection Agency) (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates. EPA 600/R-99/064. EPA, Washington, DCGoogle Scholar
  33. Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65. doi: 10.1016/j.scitotenv.2006.09.014 CrossRefGoogle Scholar
  34. Wheelock CE, Miller JL, Miller MJ, Phillips BM, Gee SJ, Tjeerdema RS, Hammock BD (2005) Influence of container adsorption upon observed pyrethroid toxicity to Ceriodaphnia dubia and Hyalella azteca. Aquat Toxicol 74:47–52. doi: 10.1016/j.aquatox.2005.04.007 CrossRefGoogle Scholar
  35. Yu SJ (2008) The toxicology and biochemistry of insecticides. CRC Press, Boca RatonGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Richard E. LizotteJr.
    • 1
  • Matthew T. Moore
    • 1
  • Martin A. Locke
    • 1
  • Robert Kröger
    • 2
  1. 1.USDA-ARS National Sedimentation LaboratoryOxfordUSA
  2. 2.Department of Wildlife, Fisheries and AquatcultureMississippi State UniversityMississippi StateUSA

Personalised recommendations