Effects of Water Cadmium Concentrations on Bioaccumulation and Various Oxidative Stress Parameters in Rhamdia quelen

  • Alexandra Pretto
  • Vania Lucia Loro
  • Bernardo Baldisserotto
  • Maria Amália Pavanato
  • Bibiana Silveira Moraes
  • Charlene Menezes
  • Roberta Cattaneo
  • Bárbara Clasen
  • Isabela Andres Finamor
  • Valderi Dressler
Article

Abstract

The effects of sublethal cadmium concentrations on oxidative stress parameters were evaluated in Rhamdia quelen. The fish were exposed to 0.44, 236, and 414 μg l−1 cadmium for 7 and 14 days, followed by the same time periods for recovery. Enzymes, such as catalase (CAT), superoxide dismutase (SOD), and glutathione S-transferase (GST), and indicators of oxidative stress, such as thiobarbituric acid-reactive species (TBARS) and protein carbonyl, were verified in fish tissues. In addition, the accumulation of cadmium was evaluated in these tissues. Our results indicate that CAT and GST levels decreased in gills after exposure periods associated with increased TBARS levels. In hepatic tissue, CAT, GST, TBARS, and protein carbonyl levels increased after 7 days of exposure, whereas SOD activity decreased after exposure for 14 days. In the kidney, TBARS levels decreased after exposure for 7 days and increased after exposure for 14 days. During the recovery periods, some variations persisted in gills, liver, and kidney. Cadmium accumulation was most significant in liver, followed by kidney and gills. These results indicate that cadmium concentrations studied invoke a stress response in silver catfish.

References

  1. Almroth BC, Sturve J, Berglund A, Förlin L (2005) Oxidative damage in eelpout (Zoarces viviparous), measured as protein carbonyl and TBARS, as biomarkers. Aquat Toxicol 73:171–180CrossRefGoogle Scholar
  2. Almroth BC, Sturve J, Stephensen E, Holt TF, Forlin L (2008) Protein carbonyls and antioxidant defenses in corkwing wrasse (Symphodus melops) from a heavy metal polluted and a PAH polluted site. Mar Environ Res 66:271–277CrossRefGoogle Scholar
  3. Asagba SO, Eriyamremu GE, Igberaese ME (2008) Bioaccumulation of cadmium and its biochemical effect on selected tissues of the catfish (Clarias gariepinus). Fish Physiol Biochem 34:61–69CrossRefGoogle Scholar
  4. Atli G, Alptekin Ö, Tükel S, Canli M (2006) Response of catalase activity to Ag+, Cd2+, Cr6+, Cu2+ and Zn2+ in five tissues of freshwater fish Oreochromis niloticus. Comp Biochem Physiol C 143:218–224CrossRefGoogle Scholar
  5. Ballesteros ML, Wunderlin DA, Bistoni MA (2009) Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan. Ecotoxicol Environ Saf 72:199–205CrossRefGoogle Scholar
  6. Barcellos LJG, Kreutz LC, Rodrigues LB, Fioreze I, Quevedo RM, Cericato L et al (2003) Haematological and biochemical characteristics of male jundiá (Rhamdia quelen Quoy & Gaimard Pimelodidae): changes after acute stress. Aquacult Res 34:1465–1469CrossRefGoogle Scholar
  7. Benaduce APS, Kochhann D, Flores EMM, Dressler VL, Baldisserotto B (2008) Toxicity of cadmium for silver catfish Rhamdia quelen (Heptapteridae) embryos and larvae at different alkalinities. Arch Environ Contam Toxicol 54:274–282CrossRefGoogle Scholar
  8. Bhakta JN, Munekage Y (2008) Role of ecosystem components in Cd removal process of aquatic ecosystem. Ecol Eng 32:274–280CrossRefGoogle Scholar
  9. Buege JA, Aust SD (1978) Microssomal lipid peroxidation. Methods Enzymol 52:302–309CrossRefGoogle Scholar
  10. Cattani O, Serra R, Isani G, Raggi G, Cortesi P, Carpene E (1996) Correlation between metallothionein and energy metabolism in sea bass, Dicentrarchus labrax, exposed to cadmium. Comp Biochem Physiol C 113:193–199CrossRefGoogle Scholar
  11. Cinier CC, Petit-Ramel M, Faure R, Garin D, Bouvet Y (1999) Kinetics of cadmium accumulation and elimination in carp Cyprinus carpio tissues. Comp Biochem Physiol C 122:345–352Google Scholar
  12. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38CrossRefGoogle Scholar
  13. Gioda CR, Lissner LA, Pretto A, da Rocha JBT, Schetinger MRC, Neto JR et al (2007) Exposure to sublethal concentrations of Zn (II) and Cu (II) changes biochemical parameters in Leporinus obtusidens. Chemosphere 69:170–175CrossRefGoogle Scholar
  14. Gomes LC, Golombieski JI, Gomes ARC, Baldisserotto B (2000) Biologia do jundiá Rhamdia quelen (Teleostei, Pimelodidae). Cienc Rural 30:179–185CrossRefGoogle Scholar
  15. Habig WH, Pabst MJ, Jacoby WB (1974) Glutathione S-transferase, the first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  16. Liu H, Wang W, Zhang J, Wang X (2006) Effects of copper and its ethylenediaminetetraacetate complex on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicol Environ Saf 65:350–354CrossRefGoogle Scholar
  17. Lowry DH, Rosenbrough NJ, Far AL, Randal RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  18. Mc Cord JM, Fridovich I (1969) Superoxide dismutase: an enzymatic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055Google Scholar
  19. Monserrat JM, Martínez PE, Geracitano LA, Amado LL, Martins CMG, Pinho GLL et al (2007) Pollution biomarkers in estuarine animals: critical review and new perspectives. Comp Biochem Physiol C 146:221–234Google Scholar
  20. Monteiro DA, Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143:141–149CrossRefGoogle Scholar
  21. Nelson DP, Kiesow LA (1972) Enthalpy of decomposition of hydrogen peroxide by catalase at 25°C (with molar extinction coefficients of H2O2 solution in the UV). Anal Biochem 49:474–478CrossRefGoogle Scholar
  22. Parvez S, Raisuddin S (2005) Protein carbonyl: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environ Toxicol Pharmacol 20:112–117CrossRefGoogle Scholar
  23. Pretto A, Loro VL, Morsch VM, Moraes BS, Menezes C, Clasen B et al (2010) Acetylcholinesterase activity, lipid peroxidation, and bioaccumulation in silver catfish (Rhamdia quelen) exposed to cadmium. Arch Environ Contam Toxicol 58:1008–1014CrossRefGoogle Scholar
  24. Roméo M, Bennani N, Gnassia-Barelli M, Lafaurie M, Girard JP (2000) Cadmium and copper display different responses towards oxidative stress in the kidney of the sea bass Dicentrarchus labrax. Aquat Toxicol 48:185–194CrossRefGoogle Scholar
  25. Sampaio FG, Boijink CL, Tie Oba E, Santos LRB, Kalinin AL, Rantin FT (2008) Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comp Biochem Physiol C 147:43–51Google Scholar
  26. Sanchez W, Palluel O, Meunier L, Coquery M, Porcher J, Aït-Aïssa S (2005) Copper-induced oxidative stress in three-spined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19:177–183CrossRefGoogle Scholar
  27. Sies H (1993) Strategies of antioxidant defence. Eur J Biochem 215:213–219CrossRefGoogle Scholar
  28. Soares SS, Martins H, Gutiérrez-Merino C, Aureliano M (2008) Vanadium and cadmium in vivo effects in teleost cardiac muscle: metal accumulation and oxidative stress markers. Comp Bochem Physiol C 147:168–178Google Scholar
  29. Wu SM, Shih M, Ho Y (2007) Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comp Biochem Physiol C 145:218–226Google Scholar
  30. Yan LJ, Traber MG, Packer L (1995) Spectrophotometric method for determination of carbonyls in oxidatively modified apolipoprotein B of human low-density lipoproteins. Anal Biochem 228:349–351CrossRefGoogle Scholar
  31. Zhang J, Shen H, Wang X, Wu J, Xue Y (2004) Effects of chronic exposure of 2, 4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 55:167–174CrossRefGoogle Scholar
  32. Zirong X, Shijun B (2007) Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver. Ecotoxicol Environ Saf 67:89–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alexandra Pretto
    • 1
  • Vania Lucia Loro
    • 1
    • 2
  • Bernardo Baldisserotto
    • 2
  • Maria Amália Pavanato
    • 2
  • Bibiana Silveira Moraes
    • 1
  • Charlene Menezes
    • 1
  • Roberta Cattaneo
    • 1
  • Bárbara Clasen
    • 1
  • Isabela Andres Finamor
    • 2
  • Valderi Dressler
    • 3
  1. 1.Adaptive Laboratory of Biochemistry, Department of ChemistryUniversity of Santa MariaSanta MariaBrazil
  2. 2.Department of Physiology and PharmacologyUniversity of Santa MariaSanta MariaBrazil
  3. 3.Department of ChemistryUniversity of Santa MariaSanta MariaBrazil

Personalised recommendations