Advertisement

Assessment of Ametryn Contamination in River Water, River Sediment, and Mollusk Bivalves in São Paulo State, Brazil

  • Analu Egydio Jacomini
  • Plínio Barbosa de Camargo
  • Wagner Eustáquio Paiva Avelar
  • Pierina Sueli BonatoEmail author
Article

Abstract

São Paulo state, Brazil, is one of the main areas of sugar cane agriculture in the world. Herbicides, in particular, ametryn, are extensively used in this extensive area, which implies that this herbicide is present in the environment and can contaminate the surface water by running off. Thereby, residues of ametryn were analyzed in samples of river water an river sediment and in freshwater bivalves obtained from the rivers Sapucaí, Pardo and Mogi-Guaçu in São Paulo State, Brazil. Samples were taken in the winter of 2003 and 2004 in two locations in each river. The specimens of freshwater bivalves collected and analyzed were Corbicula fluminea, an exotic species, and Diplodon fontaineanus, a native species. Additionally, the evaluation of the ability of bioconcentration and depuration of ametryn by the freshwater bivalve Corbicula fluminea was also performed. Ametryn concentrations in the samples were measured by liquid chromatography coupled to mass spectrometry. Residues of ametryn in water (50 ng/L) and in freshwater bivalves (2–7 ng/g) were found in the Mogi-Guaçu River in 2004, and residues in river sediments were found in all rivers in 2003 and 2004 (0.5–2 ng/g). The observation of the aquatic environment through the analysis of these matrixes, water, sediment, and bivalves, revealed the importance of the river sediment in the accumulation of the herbicide ametryn, which can contaminate the biota.

Keywords

Bivalve Sugar Cane Atrazine River Sediment Mollusk Bivalve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Armas ED, Monteiro RTR, Amâncio AV, Correa RML, Guercio MA (2005) Uso de agrotóxicos em cana-de-açúcar na bacia do rio Corumbataí e o risco de poluição hídrica. Quim Nova 28:975–982Google Scholar
  2. Avelar WEP, Nather FC, Figueiredo MCG, Casanova IC, Lopes JLC (1991) Biological monitoring of organochlorides using the liminic bivalve Anodontites trapesialis (Lam 1819). Ann Acad Bras Ci 63:337–343Google Scholar
  3. Avelar WEP, Souza ADG, Lopes JLC, Casanova IC (1998) Biological monitoring of organochlorine pesticides using Anodondites trapesialis (Lam, 1819), (Bivalvia: Mycetopodidae) in a lotic environment: urban sewage. Ci Cult 50:452–456Google Scholar
  4. Barceló D (1991) Occurrence, handling and cromatographic determination of pesticides in the aquatic environment. Analyst 116:681–689CrossRefGoogle Scholar
  5. Bayen S, Thomas GO, Lee HK, Obbard JP (2004) Organochlorine pesticides and heavymetals in green mussel, Perna viridis in singapore. Water Air Soil Pollut 155:103–116CrossRefGoogle Scholar
  6. Carro N, García I, Ignacio M, Mouteira A (2004) Possible influence of lipid content on levels of organochlorine compounds in mussels from Galicia coast (Northwestern, Spain) Spatial and temporal distribution patterns. Environ Int 30:457–466CrossRefGoogle Scholar
  7. Cerdeira AL, Santos NAG, Pessoa MCPY, Gomes MA, Lanchote VL (2005) Herbicide leaching on a recharge area aquifer in Brazil. J Environ Sci Health B 40:159–165Google Scholar
  8. Chefetz B, Bilkis YI, Polubesova T (2004) Sorption–desorption behavior of triazine and phenylurea herbicides in Kishon river sediments. Water Res 38:4383–4394CrossRefGoogle Scholar
  9. CONAMA (Conselho Nacional do Meio Ambiente) (1986) Number 20, 10 June 1986Google Scholar
  10. Deeb KZE, Said TO, Naggar MHE, Shreadah MA (2007) Distribution and sources of aliphatic and polycyclic aromatic hydrocarbons in surface sediments, fish and bivalves of Abu Qir Bay (Egyptian Mediterranean Sea). Bull Environ Contam Toxicol 78:373–379CrossRefGoogle Scholar
  11. Dores EFGC, Navickiene S, Cunha MLF, Carbo L, Ribeiro ML, Freire EML (2006) Multiresidue determination of herbicides in environmental waters from Primavera do Leste Region (Middle West of Brazil) by SPE-GC-NPDJ. Braz Chem Soc 17:866–873Google Scholar
  12. Espíndola ELG, Brigante J (2003) Limnologia fluvial: Estudo no Rio Mogi Guaçu. Rima, São Carlos, p 255Google Scholar
  13. Esteves FA (1998) Fundamentos de limnologia. Interciência, Rio de Janeiro, p 602Google Scholar
  14. Faria M, Carrasco L, Diez S, Riva MC, Bayona JM, Barata C (2009) Multi-biomarker responses in the freshwater mussel Dreissena polymorpha exposed to polychlorobiphenyls and metals. Comp Biochem Physiol C 149:281–288Google Scholar
  15. Galassi S, Bettinetti R, Neri MC, Jeannot R, Dagnac T, Bristeau S, Sakkas V, Albanis T, Boti V, Valsamaki T, Falandysz J, Schulte-Oehlmannf U (2008) A multispecies approach for monitoring persistent toxic substances in the Gulf of Gdansk (Baltic sea). Ecotoxicol Environ Saf 69:39–48CrossRefGoogle Scholar
  16. Gomes MAF (2003) Potencial de contaminação das águas subterrâneas pelo herbicida tebuthiuron- estudo de caso na microbacia do córrego espraiado, Ribeirão Preto/SP. Projeto de proteção e desenvolvimento sustentável do sistema Aqüífero Guarani: Memória Seminário Aqüífero Guarani. Ribeirão Preto, DAEE/IG (org.), p 232Google Scholar
  17. Gramatica P, Corradi M, Consonni V (2000) Modelling and prediction of soil sorption coefficients of non-ionic organic pesticides by molecular descriptors. Chemosphere 41:763–777CrossRefGoogle Scholar
  18. Gunkel G, Streit B (1980) Mechanisms of bioaccumulation of a herbicide (atrazine, s-triazine) in a freshwater mollusc (Ancylus fluviatilis. Müll.) and fish (Coregonus fera Junine). Water Res 14:1573–1584CrossRefGoogle Scholar
  19. Gunther AJ, Davis JA, Hardin DD, Gold J, Bell D, Crick JR, Scelfo GM, Sericano J, Stephenson M (1999) Long-term bioaccumulation monitoring with transplanted bivalves in the San Fransisco Estuary. Marine Pollut Bull 38:170–181CrossRefGoogle Scholar
  20. IBGE (Instituto Brasileiro de Geografia e Estatística) (2008) http://www.ibge.gov.br. Accessed 2008
  21. IEA (Instituto de Economia Agrícola) (2008) http://www.iea.sp.gov.br. Accessed 2008
  22. Jacomini AE, Avelar WEP, Martinez AS, Bonato PS (2006) Bioaccumulation of atrazine in freshwater bivalves Anodontites trapesialis (Lamarck, 1819) and Corbicula fluminea (Müller, 1774). Arch Environ Contam Toxicol 51:387–391CrossRefGoogle Scholar
  23. Jacomini AE, Camargo PB, Avelar WEP, Bonato PS (2009) Determination of ametryn in river water, river sediment and bivalve mussels by liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 20:107–116CrossRefGoogle Scholar
  24. Khaled A, Nemr AE, Said TO, El-Sikaily A, Abd-Alla AMA (2004) Polychlorinated biphenyls and chlorinated pesticides in mussels from the Egyptian Red Sea coast. Chemosphere 54:1407–1412CrossRefGoogle Scholar
  25. Laabs V, Amelung W, Pinto AA, Zech W (2002a) Fate of pesticides in tropical soils of Brazil under field conditions. J Environ Qual 31:1636–1648CrossRefGoogle Scholar
  26. Laabs V, Amelung W, Pinto AA, Wantzen M, Silva CJ, Zech W (2002b) Pesticides in surface water, sediment, and rainfall of the northeastern pantanal basin, Brazil. J Environ Qual 31:1636–1648CrossRefGoogle Scholar
  27. Lanchote VL, Bonato PS, Cerdeira AL, Santos NAG, Carvalho D, Gomes MA (2000) HPLC screening and CG-MS confirmation of triazine herbicides residues in drinking water from sugar cane area in Brazil. Water Air Soil Pollut 118:329–337CrossRefGoogle Scholar
  28. Lehotay SJ, Fetcho JAH, McConnell LL (1998) Agricultural pesticide residues in oysters and water from two chesapeake Bay tributaries. Marine Pollut Bull 37:32–44CrossRefGoogle Scholar
  29. Liu W, Chen J, Lin X, Fan Y, Tao S (2007) Residual concentrations of micropollutants in benthic mussels in the coastal areas of Bohai Sea, North China. Environ Pollut 146:470–477CrossRefGoogle Scholar
  30. Long JLA, House WA, Parker A, Rae JE (1998) Micro-organic compounds associated with sediments in the Humber rivers. Sci Total Environ 210–211:229–253Google Scholar
  31. Lopes JLC, Casanova IC, Figueiredo MCG, Nather FC, Avelar WEP (1992) Anodondites trapesialis: a biological monitor of organochlorine pesticides. Arch Environ Contam Toxicol 23:351–354CrossRefGoogle Scholar
  32. Pesticideinfo (2008) http://www.pesticideinfo.org/. Accessed 2008
  33. Phillips DJH, Rainbow PS (1994) Biomonitoring of trace aquatic contaminants. Chapman & Hall, London, p 371Google Scholar
  34. Preez HH, Vuren JHJ (1992) Bioconcentration of atrazine in the banded tilapia, Tilapia sparrmanii. Comp Biochem Physiol 101C:651–655Google Scholar
  35. Reid RGB, McMahon RF, Foighil DO, Finnigan R (1992) Anterior inhalant currents and pedal-feeding in bivalves. Veliger 35:93–104Google Scholar
  36. Richman L, Somers K (2005) Can we use Zebra and Quagga mussels for biomonitoring contaminants in the Niagara river? Water Air Soil Pollut 167:155–178CrossRefGoogle Scholar
  37. Roche H, Vollaire Y, Martin E, Rouer C, Coulet E, Grillas P, Banas D (2009) Rice fields regulate organochlorine pesticides and PCBs in lagoons of the Nature Reserve of Camargue. Chemosphere 75:526–533CrossRefGoogle Scholar
  38. Rodrigues GS, Paraíba LC, Buschinelli CC (1997) Estimativa da carga contaminante de pesticidas e nitrato para as águas subterrâneas no estado de São Paulo. Pesticidas: R Ecotoxicol Meio Ambiente, Curitiba 7:89–108Google Scholar
  39. Rosés N, Poquet M, Muñoz I (1999) Behavioural and histological effects of atrazine on freshwater molluscs (Physa acuta Drap. and Ancylus fluviatilis Müll, Gastropoda). J Appl Toxicol 19:351–356CrossRefGoogle Scholar
  40. Rudorff BFT, Berka LMS, Moreira MA, Duarte V, Xavier AC, Rosa VGC, Shimabukuro YE (2005) Imagens de satélite no mapeamento e estimativa de área de cana-de-açúcar em São Paulo: ano safra 2003/04. Agric São Paulo 52:21–39Google Scholar
  41. Salomons W, Stigliani WM (1995) Biogeodynamics of pollutans in soil and sediments: risk assessment of delayed and non-linear responses. Springer-Verlag, Berlin, p 352Google Scholar
  42. Silva DML, Camargo PB, Martinelli LA, Lanças FM, Pinto JSS, Avelar WEP (2008) Organochlorine pesticides in Piracicaba River Basin (São Paulo/Brazil): a survey of sediment, bivalve and fish. Quim Nova 31:214–219Google Scholar
  43. SINDAG (Sindicato Nacional da Indústria de Produtos para Defesa Agrícola) (2006) http://www.sindag.sp.gov.br. Accessed 2006
  44. Smolders R, Bervoets L, Blust R (2002) Transplanted Zebra mussels (Dreissena polymorpha) as active biomonitors in an effluent-dominated river. Environ Toxicol Chem 21:1889–1896Google Scholar
  45. Solé M, Porte C, Barcelo D, Albaiges J (2000) Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Marine Pollut Bull 40:746–753CrossRefGoogle Scholar
  46. Uno S, Shiraishi H, Hatakeyama S, Otsuki A, Koyama J (2001) Accumulative characteristics of pesticides residues in organs of bivalves (Anodonta woodiana and Corbicula leana) under natural conditions. Arch Environ Contam Toxicol 40:35–47CrossRefGoogle Scholar
  47. Wade TL, Sericano JL, Gardinali PR, Wolff G, Chambers L (1998) NOAA’s ‘Mussel Watch’ Project: current use organic compounds in bivalves. Marine Pollut Bull 37:20–26CrossRefGoogle Scholar
  48. Wang Y, Yang R, Jiang G (2007) Investigation of organochlorine pesticides (OCPs) in mollusks collected from coastal sites along the Chinese Bohai Sea from 2002 to 2004. Environ Pollut 146:100–106CrossRefGoogle Scholar
  49. Wen S, Hui Y, Yang F, Liu Z, Xu Y (2008) Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in surface sediment and bivalve from the Changjiang Estuary, China. Chin J Oceanol Limnol 26:35–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Analu Egydio Jacomini
    • 1
  • Plínio Barbosa de Camargo
    • 2
  • Wagner Eustáquio Paiva Avelar
    • 1
  • Pierina Sueli Bonato
    • 3
    Email author
  1. 1.Department of Biology, Faculty of Phylosophy, Sciences and Letters of Ribeirão PretoSão Paulo UniversityRibeirão PretoBrazil
  2. 2.Center of Nuclear Energy AppliedSão Paulo UniversityPiracicabaBrazil
  3. 3.Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão PretoSão Paulo UniversityRibeirão PretoBrazil

Personalised recommendations