Assessment of Heavy Metal Pollution in Republic of Macedonia Using a Plant Assay

  • Darinka Gjorgieva
  • Tatjana Kadifkova-Panovska
  • Katerina Bačeva
  • Trajče Stafilov
Article

Abstract

Different plant organs (leaves, flowers, stems, or roots) from four plant species—Urtica dioica L. (Urticaceae), Robinia pseudoacacia L. (Fabaceae), Taraxacum officinale (Asteraceae), and Matricaria recutita (Asteraceae)—were evaluated as possible bioindicators of heavy-metal pollution in Republic of Macedonia. Concentrations of Pb, Cu, Cd, Mn, Ni, and Zn were determined in unwashed plant parts collected from areas with different degrees of metal pollution by ICP-AES. All these elements were found to be at high levels in samples collected from an industrial area. Maximum Pb concentration was 174.52 ± 1.04 mg kg−1 in R. pseudoacacia flowers sampled from the Veles area, where lead and zinc metallurgical activities were present. In all control samples, the Cd concentrations were found to be under the limit of detection (LOD <0.1 mg kg−1) except for R. pseudoacacia flowers and T. officinale roots. The maximum Cd concentration was 7.97 ± 0.15 mg kg−1 in R. pseudoacacia flowers from the Veles area. Nickel concentrations were in the range from 1.90 ± 0.04 to 5.74 ± 0.03 mg kg−1. For U. dioica leaves and R. pseudoacacia flowers sampled near a lead-smelting plant, concentrations of 465.0 ± 0.55 and 403.56 ± 0.34 mg kg−1 Zn were detected, respectively. In all control samples, results for Zn were low, ranging from 10.2 ± 0.05 to 38.70 ± 0.18 mg kg−1. In this study, it was found that the flower of R. pseudoacacia was a better bioindicator of heavy-metal pollution than other plant parts. Summarizing the results, it can be concluded that T. officinale, U. dioica, and R. pseudoacacia were better metal accumulators and M. recutita was a metal avoider.

References

  1. Akgüç N, Özyigit II, Yarci C (2008) Pyracantha coccinea roem. (Rosaceae) as a biomonitor for Cd, Pb and Zn in Mugla province (Turkey). Pak J Bot 40(4):1767–1776Google Scholar
  2. Aksoy A, Sahin U (1999) Elaeagnus angustifolia L. as a possible biomonitor of heavy-metal pollution. Turk J Bot 23:83–87Google Scholar
  3. Aksoy A, Sahin U, Duman F (2000) Robinia pseudo-acacia L. as a possible biomonitor of heavy-metal pollution in Kayseri. Turk J Bot 24(5):279–284Google Scholar
  4. Allen SE (1989) Chemical analyses of ecological material, 2nd edn. Blackwell Scientific, LondonGoogle Scholar
  5. An Y-J (2006) Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 62:1359–1365CrossRefGoogle Scholar
  6. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stafilov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118CrossRefGoogle Scholar
  7. Baranovska J, Srogi K, Wlochavicz A, Szczepanik K (2002) Determination of heavy-metal contents in samples of medicinal herbs. Pol J Environ Stud 11:467–471Google Scholar
  8. Calzoni GL, Antognoni F, Pari E, Fonti P, Gnes A, Speranza A (2007) Active biomonitoring of heavy-metal pollution using Rosa rugosa plants. Environ Pollut 149(2):239–245CrossRefGoogle Scholar
  9. Çelik A, Kartal AA, Akdoğan A, Kaska Y (2005) Determining the heavy-metal pollution in Denizli (Turkey) by using Robinio pseudo-acacia L. Environ Int 31:105–112CrossRefGoogle Scholar
  10. Chehregani A, Mohsenzade F, Vaezi F (2009) Introducing a new metal accumulator plant and the evaluation of its ability in removing heavy-metals. Toxicol Environ Chem 91(6):1105–1114CrossRefGoogle Scholar
  11. Diatta J, Grzebisz W, Apolinarska K (2003) A study of soil pollution by heavy-metals in the city of Poznan (Poland) using dandelion (Taraxacum officinale Web) as a bioindicator. Electron J Pol Agr Univ EJPAU 6(2):01Google Scholar
  12. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Annu Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  13. Garty J, Galun M, Fuchs C, Nizapel N (1997) Heavy-metals in lichen Calopaca annantia from urban, suburban and rural regions in Israel (a comparative study). Water Air Soil Pollut 8:177Google Scholar
  14. Gaweda M, Capecka E (2001) The content of some metals in stinging netlle (Urtica dioica L.) plants from natural sites in Malopolska. Herba Pol 47:149–156Google Scholar
  15. Gough LP, Shacklette HT, Case AA (1979) Element concentrations toxic to plants, animals and man. U.S. Geol Surv Bull 80:1466Google Scholar
  16. Gűleryűz G, Arslan H, Çelik C, Gűcer Ş, Kendall M (2008) Heavy-metal content of plant species along Nilűfer stream in industrialized Bursa City, Turkey. Water Air Soil Pollut 195:275–284CrossRefGoogle Scholar
  17. Hagemeyer J (2004) Ecophysiology of plant growth under heavy-metal stress. In: Prasad MNV (ed) Heavy-metal stress in plants: from molecules to ecosystems, 2nd edn. Springer, Berlin, pp 201–222Google Scholar
  18. Harmens H, Noris D, Aboal Viñas J, Alber R, Aleksiayenak Y, Ashmore M, Barandovski L, Berg T, Bermejo R, Blim O, Carballeira Ocaña A, Çayir A, Cokun Ma, Cokun Mü, Dam M, Diffenbach-Fries H, Elustondo D, Ermakova E, Fernández Escribano A, Florek M, Frolova M, Frontasyeva M, Godzik B, González-Miqueo L, Grodziska K, Harmens H, Jarvis K, Jeran Z, Jordan C, Kapusta P, Karhu J, Krmar M, Kubin E, Kvietkus K, Lasheras E, Leblond S, Liiv S, Lloyd A, Makovská B, Marinova S, Magnússon SH, Meresova J, Nikodemus O, Olsson T, Oszlanyi J, Pankratova Y, Piispanen J, Poikolainen J, Rausch-de Traubenberg C, Riss A, Rühling Å, Santamaría JJM, Schröder LW, Spiric Z, Stafilov T, Steinnes E, Ly Strelkova, Susharová J, Szarek-Ukaszewska G, Szymon K, Thöni De Tammerman L, Uggerud H, Urumov V, Yurukova L, Vergel K, Zechmeister H (2008) Spatial and temporal trends in heavy-metal accumulation in mosses in Europe (1990–2005). In: Harmens H, Noris D (eds) Programme coordination centre for the ICP vegetation. Centre for Ecology & Hydrology, Bangor, UKGoogle Scholar
  19. Kabata-Pendias A, Dudka S (1991) Trace metal contents of Taraxacum officinale (Dandelion) as a convenient environmental indicator. Environ Geochem Health 13:108–113CrossRefGoogle Scholar
  20. Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC Press, Boca Raton, FLGoogle Scholar
  21. Kim CS, Jung J (1993) The susceptibility of mung bean chloroplasts to photoinhibition is increased by an excess supply iron to plants: a photobiological aspect of iron toxicity in plant leaves. Photochem Photobiol 58:120–126CrossRefGoogle Scholar
  22. Kloke A, Sauerbeck DC, Vetter H (1984) The contamination of plants and soils with heavy-metals and the transport of metals in terrestrial food chains. In: Nriagu JO (ed) Changing metal cycles and human health. Dahlem Konferenzen, Berlin, pp 113–141Google Scholar
  23. Kováčik J, Bačkor M (2008) Oxidative status of Matricaria chamomilla plants related to cadmium and copper uptake. Ecotoxicology 17:471–479CrossRefGoogle Scholar
  24. Kováčik J, Tomko J, Bačkor M, Repčák M (2006) Matricaria chamomilla is not a hyperaccumulator, but tolerant to cadmium stress. Plant Growth Regul 50:239–247CrossRefGoogle Scholar
  25. Kováčik J, Grúz J, Bačkor M, Tomko J, Strand M, Repčák M (2008) Phenolic compounds composition and physiological attributes of Matricaria chamomilla grown in copper excess. Environ Exp Bot 62:145–152CrossRefGoogle Scholar
  26. Krolak E (2003) Accumulation of Zn, Cu, Pb and Cd by Dandelion (Taraxacum officinale Web) in environments with various degrees of metallic contamination. Pol J Environ Stud 12(6):713–721Google Scholar
  27. Madejon P, Maranon T, Murillo JM, Robinson B (2004) White poplar (Populus alba) as a biomonitor of trace elements in contaminated Riparian forests. Environ Pollut 132:145–155CrossRefGoogle Scholar
  28. Markert B (1994) Plants as biomonitors-potential advantages and problems. In: Adriano DC, Chen ZC, Yang SS (eds) Biogeochemistry of trace elements. Science and Technology Letters, Northwood, NY, pp 601–613Google Scholar
  29. Markert B, Wappelhorst O, Weckert V, Herpin V, Sieners U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem 240:425–429CrossRefGoogle Scholar
  30. Ministry of Urban Planning, Construction and Environment (1996) National environmental action plan (NEAP). Skopje, R. MacedoniaGoogle Scholar
  31. Oliva SR, Rautio P (2004) Could ornamental plants serve as a passive biomonitors in urban areas? J Atmos Chem 49:137–138CrossRefGoogle Scholar
  32. Ouzounidou G (1994) Copper-induced changes on growth metal content and photosynthetic function of Alyssum montanum L. plants. Environ Exp Bot 34:165–172CrossRefGoogle Scholar
  33. Palmieri RM, La Pera L, Di Bella G, Dugo G (2005) Simultaneous determination of Cd(II), Cu(II), Pb(II) and Zn(II) by derivative stripping chronopotentiometry in Pittosporum tobira leaves: a measurement of local atmospheric pollution in Messina (Sicily, Italy). Chemosphere 59:1161–1168CrossRefGoogle Scholar
  34. Poikolainen J, Kubin E, Piispanen J, Karhu J (2004) Atmospheric heavy-metal deposition in Finland during 1985–2000 using mosses as bioindicators. Sci Total Environ 318:171–185CrossRefGoogle Scholar
  35. Pyatt FB (2001) Copper and lead bioaccumulation by Acacia retinoides and Eucalyptus torquatain sites contaminated as a concequence of extensive ancient mining activities in Cyprus. Ecotox Environ Safe 50:60–64CrossRefGoogle Scholar
  36. Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433Google Scholar
  37. Samecka-Cymerman A, Stankiewicz A, Kolon K, Kempers AJ (2009) Self-organizing feature map (neural networks) as a tool to select the best indicator of road traffic pollution (soil. leaves or bark of Robinia pseudoacacia L.). Environ Pollut 157:2061–2065CrossRefGoogle Scholar
  38. Schulze E-D, Beck E, Müller-Hohenstein K (2005) Heavy-metals. In: Czeschlik D (ed) Plant ecology. Springer, Berlin, p 183Google Scholar
  39. Shaw BP, Sahu SK, Mishra RK (2004) Heavy-metal induced oxidative damage in terrestrial plants. In: Prasad MNV (ed) Heavy-metal stress in plants: from molecules to ecosystems, 2nd edn. Springer, Berlin, pp 84–126Google Scholar
  40. Stafilov T, Jordanovska V (1997) Determination of cadmium in some vegetables produced in the area near the lead and zinc smelting plant in Veles, Macedonia. Ecol Protect Environ 4:35–38Google Scholar
  41. Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2008) Geochemical atlas of Veles and the environs. Faculty of Natural Sciences and Mathematics, Skopje, R. MacedoniaGoogle Scholar
  42. Stafilov T, Šajn R, Pančevski Z, Boev B, Frontasyeva MV, Strelkova LP (2010) Heavy-metal contamination of surface soils around a lead and zinc smelter in the Republic of Macedonia. J Hazar Mater 175:896–914CrossRefGoogle Scholar
  43. UK Environmental Protection Act (1990) Chap 43, part IGoogle Scholar
  44. Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ Pollut 120:11–21CrossRefGoogle Scholar
  45. Yusuf AA, Arowolo TA, Bamgbose O (2003) Cadmium, copper and nickel levels in vegetables from industrial and residential areas of Lagos City, Nigeria. Food Chem Toxicol 41:375–378CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Darinka Gjorgieva
    • 1
  • Tatjana Kadifkova-Panovska
    • 2
  • Katerina Bačeva
    • 3
  • Trajče Stafilov
    • 3
  1. 1.Faculty of Medical SciencesUniversity “Goce Delčev”ŠtipRepublic of Macedonia
  2. 2.Faculty of PharmacyUniversity “Ss. Cyril and Methodius”SkopjeRepublic of Macedonia
  3. 3.Faculty of Natural Sciences and MathematicsUniversity “Ss. Cyril and Methodius”SkopjeRepublic of Macedonia

Personalised recommendations